A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genistein improves viability, proliferation and mitochondrial function of cardiomyoblasts cultured in physiologic and peroxidative conditions. | LitMetric

Genistein improves viability, proliferation and mitochondrial function of cardiomyoblasts cultured in physiologic and peroxidative conditions.

Int J Mol Med

Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, AGING Project, University of East Piedmont, I‑28100 Novara, Italy.

Published: December 2019

Phytoestrogens exert protective effects on the cardiovascular system through mechanisms that have yet to be clearly demonstrated. The aim of this study was to evaluate the protective effects exerted by genistein on cardiomyoblasts (H9C2) against oxidative stress, nitric oxide (NO) release, viability, proliferation/migration and mitochondrial function. H9C2 cultured in physiological or peroxidative conditions, were treated with genistein in the absence or presence of estrogen receptors (ERs), G protein‑​coupled‑estrogenic‑receptors (GPER), Akt, extracellular‑​signal‑regulated kinases 1/2 (ERK1/2) and p38 mitogen activated protein kinase (p38MAPK) blockers. Cell viability, proliferation, migration, mitochondrial membrane potential, mitochondrial oxygen consumption and oxidant/antioxidant system, were measured by specific assays. Western blot assay was used for the analysis of NO synthase (NOS) subtypes' and expression and activation of various kinases. In all experiments 17β‑estradiol was used for comparison. The results showed that phytoestrogens and estrogens can increase cell viability, proliferation/migration and improve mitochondrial membrane potential and oxygen consumption of H9C2. Furthermore, NO release was modulated by genistein and 17β‑estradiol. These effects were reduced or abolished by the pre‑treatment with ERs, GPER, Akt, ERK1/2 and p38MAPK blockers. Finally, a reduction of reactive oxygen species production and an increase of glutathione content was found in response to the two agents. In H9C2 cultured in physiological conditions, genistein induced endothelial NOS‑dependent NO production through the involvement of estrogenic receptors and by the modulation of intracellular signalling related to Akt, ERK1/2, and p38MAPK. Moreover, estrogens and phytoestrogens protected H9C2 against oxidative stress by reducing inducible NOS expression and through the modulation of the antioxidant system and mitochondrial functioning.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2019.4365DOI Listing

Publication Analysis

Top Keywords

viability proliferation
8
mitochondrial function
8
peroxidative conditions
8
protective effects
8
h9c2 oxidative
8
oxidative stress
8
viability proliferation/migration
8
h9c2 cultured
8
cultured physiological
8
gper akt
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!