AI Article Synopsis

  • High-content phenotypic screening is preferred for drug discovery because it provides detailed, drug-specific data, but existing methods in epigenetics lacked sensitivity.
  • A new method called Microscopic Imaging of Epigenetic Landscapes (MIEL) has been developed to visualize and differentiate nuclear staining patterns of epigenetic marks using machine learning.
  • MIEL was tested on various cell lines and successfully identified and ranked drugs that induce beneficial epigenetic changes in glioblastoma treatments without being toxic.

Article Abstract

High-content phenotypic screening has become the approach of choice for drug discovery due to its ability to extract drug-specific multi-layered data. In the field of epigenetics, such screening methods have suffered from a lack of tools sensitive to selective epigenetic perturbations. Here we describe a novel approach, Microscopic Imaging of Epigenetic Landscapes (MIEL), which captures the nuclear staining patterns of epigenetic marks and employs machine learning to accurately distinguish between such patterns. We validated the MIEL platform across multiple cells lines and using dose-response curves, to insure the fidelity and robustness of this approach for high content high throughput drug discovery. Focusing on noncytotoxic glioblastoma treatments, we demonstrated that MIEL can identify and classify epigenetically active drugs. Furthermore, we show MIEL was able to accurately rank candidate drugs by their ability to produce desired epigenetic alterations consistent with increased sensitivity to chemotherapeutic agents or with induction of glioblastoma differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908434PMC
http://dx.doi.org/10.7554/eLife.49683DOI Listing

Publication Analysis

Top Keywords

drug discovery
12
epigenetic
5
improving drug
4
discovery image-based
4
image-based multiparametric
4
multiparametric analysis
4
analysis epigenetic
4
epigenetic landscape
4
landscape high-content
4
high-content phenotypic
4

Similar Publications

Polycomb repressive complex 2 (PRC2), composed of the core subunits EED, SUZ12, and either EZH1 or EZH2, is critical for maintaining cellular identity in multicellular organisms. PRC2 deposits H3K27me3, which is thought to recruit the canonical form of PRC1 (cPRC1) to promote gene repression. Here, we show that EZH1-PRC2 and cPRC1 are the primary Polycomb complexes on target genes in non-dividing, quiescent cells.

View Article and Find Full Text PDF

Preliminary Evidence for Perturbation-Based tACS-EEG Biomarkers of Gamma Activity in Alzheimer's Disease.

Int J Geriatr Psychiatry

January 2025

Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Background: Alzheimer's disease (AD) is characterized by impaired inhibitory circuitry and GABAergic dysfunction, which is associated with reduced fast brain oscillations in the gamma band (γ, 30-90 Hz) in several animal models. Investigating such activity in human patients could lead to the identification of novel biomarkers of diagnostic and prognostic value. The current study aimed to test a multimodal "Perturbation-based" transcranial Alternating Current Stimulation-Electroencephalography (tACS)-EEG protocol to detect how responses to tACS in AD patients correlate with patients' clinical phenotype.

View Article and Find Full Text PDF
Article Synopsis
  • Immune checkpoint therapies have revolutionized cancer treatment but face challenges like low response rates and drug resistance, highlighting the need for a better understanding of the tumor microenvironment (TME).
  • Recent studies show that biomechanical forces within the TME significantly impact immune responses and tumor progression, indicating that manipulating these forces could enhance immune activation against tumors.
  • The review discusses key biomechanical mechanisms, the role of the extracellular matrix, and potential clinical applications, aiming to provide insights for discovering new therapeutic targets.
View Article and Find Full Text PDF

Targeting KRAS: from metabolic regulation to cancer treatment.

Mol Cancer

January 2025

Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.

The Kirsten rat sarcoma viral oncogene homolog (KRAS) protein plays a key pathogenic role in oncogenesis, cancer progression, and metastasis. Numerous studies have explored the role of metabolic alterations in KRAS-driven cancers, providing a scientific rationale for targeting metabolism in cancer treatment. The development of KRAS-specific inhibitors has also garnered considerable attention, partly due to the challenge of acquired treatment resistance.

View Article and Find Full Text PDF

The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!