Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The global burden of fungal infections has transitioned from a case-specific observation to a major cause of high human mortality. Therefore, novel compounds with innovative methodologies need to be synthesized and evaluated for their antifungal potential to keep pace with the current clinical demands. An efficient synthetic pathway was developed for the synthesis of 21 synthetic novel nucleosides. Two compounds had significant antifungal effect on 3007, which was comparable to fluconazole. The experimental data (confocal microscopy, ultrahigh-performance liquid chromatography and flow cytometry) demonstrated the inhibition of fungal lanosterol 14α-demethylase. Owing to the therapeutic relevance of the synthesized nucleosides and simplicity of the procedure, the method may find its potential application for synthesis of antifungal agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/fmc-2019-0014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!