Application of the 3D-RISM-KH molecular solvation theory for DMSO as solvent.

J Comput Aided Mol Des

Department of Mechanical Engineering, 10-203 Donadeo Innovation Centre for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada.

Published: October 2019

AI Article Synopsis

  • The study evaluates the Three-Dimensional Reference Interaction Site Model (3D-RISM) coupled with the Kovalenko-Hirata (KH) closure for simulating chemical processes in dimethyl sulfoxide (DMSO).
  • Various force field parameters were tested to accurately model solvation free energy, ion solvation, and DMSO coordination in related simulations.
  • Results indicate that a united atom (UA) parameterization is the most effective approach for modeling DMSO in calculations using the 3D-RISM-KH framework.

Article Abstract

The molecular solvation theory in the form of the Three-Dimensional Reference Interaction Site Model (3D-RISM) with Kovalenko-Hirata (KH) closure relation is benchmarked for use with dimethyl sulfoxide (DMSO) as solvent for (bio)-chemical simulation within the framework of integral equation formalism. Several force field parameters have been tested to correctly reproduce solvation free energy in DMSO, ion solvation in DMSO, and DMSO coordination prediction. Our findings establish a united atom (UA) type parameterization as the best model of DMSO for use in 3D-RISM-KH theory based calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10822-019-00238-4DOI Listing

Publication Analysis

Top Keywords

molecular solvation
8
solvation theory
8
dmso solvent
8
dmso
6
application 3d-rism-kh
4
3d-rism-kh molecular
4
solvation
4
theory dmso
4
solvent molecular
4
theory form
4

Similar Publications

Rational Electrolyte Design for Elevated-Temperature and Thermally Stable Lithium-Ion Batteries with Nickel-Rich Cathodes.

ACS Appl Mater Interfaces

January 2025

Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.

As the energy density of lithium-ion batteries (LIBs) increases, the shortened cycle life and the increased safety hazards of LIBs are drawing increasing concerns. To address such challenges, a series of localized high-concentration electrolytes (LHCEs) based on a solvating-solvent mixture of tetramethylene sulfone and trimethyl phosphate and a high flash-point diluent 1H,1H,5H-octafluoropentyl 1,1,2,2-tetrafluoroethyl ether were designed. The LHCEs exhibited nonflammability and greatly suppressed heat release at elevated temperatures, which would potentially improve the safety performance of the LIBs.

View Article and Find Full Text PDF

In this work, we describe a computational tool designed to determine the local dielectric constants (ε) of charge-neutral heterogeneous systems by analyzing dipole moment fluctuations from molecular dynamics (MD) trajectories. Unlike conventional methods, our tool can calculate dielectric constants for dynamically evolving selections of molecules within a defined region of space, rather than for fixed sets of molecules. We validated our approach by computing the dielectric constants of TIP3P water nanospheres, achieving results consistent with literature values for bulk water.

View Article and Find Full Text PDF

Drug Property Optimization: Design, Synthesis, and Characterization of Novel Pharmaceutical Salts and Cocrystal-Salt of Lumefantrine.

Mol Pharm

January 2025

Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.

Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.

View Article and Find Full Text PDF

Acid-Base Equilibrium of 5,5,6-Trihydroxy-6-Methyldihydropyrimidine-2,4(1,3)-Dione in the Gas Phase and in Water.

J Phys Chem A

January 2025

Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Laboratory of Physicochemical Methods of Analysis, 69 Prospekt Oktyabrya, Ufa 450054, Russian Federation.

The first-stage acid-base equilibrium of 5,5,6-trihydroxy-6-methyldihydropyrimidine-2,4(1,3)-dione was studied for the first time in aqueous solutions. Its constant (pK = 9.23 ± 0.

View Article and Find Full Text PDF

The current study focuses on the potential of second-generation antihistamines, which exhibit fewer side effects compared to first-generation drugs, to block the Histamine H receptor (HR) and mitigate allergic responses. We screened several derivatives of second-generation drugs taking Desloratadine (Deslo) and Acrivastine (Acra) as seed compounds. We performed molecular docking, drug-likeness, quantum chemical calculations, UV-visible and infrared spectroscopy, molecular electrostatic potential (MEP) mapping for understanding drug derivatives potential as efficient drugs and molecular dynamics (MD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!