A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7v5j8uf6k2qjokqn6d2h4o15li5j4o1s): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

GRP94 promotes brain metastasis by engaging pro-survival autophagy. | LitMetric

AI Article Synopsis

  • GRP94 is an important protein that helps cells survive stress, especially in breast cancer, and its high levels can lead to brain tumors.
  • Scientists studied how changing the environment around cells affects GRP94 and its role in causing brain metastasis (BM) in breast cancer patients.
  • The study found that removing GRP94 makes tumor cells less able to survive without glucose, and treating models with hydroxychloroquine can help stop tumor growth, suggesting a new way to prevent brain metastasis.

Article Abstract

Background: GRP94 is a glucose-regulated protein critical for survival in endoplasmic reticulum stress. Expression of GRP94 is associated with cellular transformation and increased tumorigenicity in breast cancer. Specifically, overexpression of GRP94 predicts brain metastasis (BM) in breast carcinoma patients with either triple negative or ErbB2 positive tumors. The aim of this study was to understand if microenvironmental regulation of GRP94 expression might be a hinge orchestrating BM progression.

Methods: GRP94 ablation was performed in a BM model BR-eGFP-CMV/Luc-V5CA1 (BRV5CA1) of breast cancer. In vitro results were validated in a dataset of 29 metastases in diverse organs from human breast carcinomas and in BM tissue from tumors of different primary origin. BM patient-derived xenografts (PDXs) were used to test sensitivity to the therapeutic approach.

Results: BMs that overexpress GRP94 as well as tumor necrosis factor receptor-associated factor 2 are more resistant to glucose deprivation by induction of anti-apoptotic proteins (B-cell lymphoma 2 and inhibitors of apoptosis proteins) and engagement of pro-survival autophagy. GRP94 ablation downregulated autophagy in tumor cells, resulting in increased BM survival in vivo. These results were validated in a metastasis dataset from human patients, suggesting that targeting autophagy might be strategic for BM prevention. Indeed, hydroxychloroquine treatment of preclinical models of BM from PDX exerts preventive inhibition of tumor growth (P < 0.001).

Conclusions: We show that GRP94 is directly implicated in BM establishment by activating pro-survival autophagy. Disruption of this compensatory fueling route might prevent metastatic growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229259PMC
http://dx.doi.org/10.1093/neuonc/noz198DOI Listing

Publication Analysis

Top Keywords

pro-survival autophagy
12
grp94
9
brain metastasis
8
breast cancer
8
grp94 ablation
8
autophagy
5
grp94 promotes
4
promotes brain
4
metastasis engaging
4
engaging pro-survival
4

Similar Publications

Review on the role of autophagy in the toxicity of nanoparticles and the signaling pathways involved.

Chem Biol Interact

December 2024

Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China. Electronic address:

As the development of nanotechnology, the application of nanoproducts and the advancement of nanomedicine, the contact of nanoparticles (NPs) with human body is becoming increasingly prevalent. This escalation elevates the risk of NPs exposure for workers, consumers, researchers, and both aquatic and terrestrial organisms throughout the production, usage, and disposal stages. Consequently, evaluating nanotoxicity remains critically important, though standardized assessment criteria are still lacking.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is crucial for maintaining calcium balance, lipid biosynthesis, and protein folding. Disruptions in ER homeostasis, often due to the accumulation of misfolded or unfolded proteins, lead to ER stress, which plays a significant role in various diseases, especially cancer. Urological cancers, which account for high male mortality worldwide, pose a persistent challenge due to their incurability and tendency to develop drug resistance.

View Article and Find Full Text PDF

We have earlier reported novel anti-leishmanial molecules, veratramine and hupehenine, targeting dephospho-coenzyme A kinase of the parasite. In our current investigation, we assessed the efficacy of these two steroidal alkaloids, veratramine and hupehenine, in combating the parasite. Contrary to expectations, our study did not detect the typical signs of apoptosis such as mitochondrial membrane potential loss and phosphatidylserine externalization.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is a dynamic organelle that is a site of the synthesis of proteins and lipids, contributing to the regulation of proteostasis, lipid metabolism, redox balance, and calcium storage/-dependent signaling events. The disruption of ER homeostasis due to the accumulation of misfolded proteins in the ER causes ER stress which activates the unfolded protein response (UPR) system through the activation of IRE1, PERK, and ATF6. Activation of UPR is observed in various cancers and therefore, its association with process of carcinogenesis has been of importance.

View Article and Find Full Text PDF

Background: Mortality from breast cancer is principally due to tumor recurrence. Recurrent breast cancers arise from the pool of residual tumor cells, termed minimal residual disease, that survive treatment and may exist in a dormant state for 20 years or more following treatment of the primary tumor. As recurrent breast cancer is typically incurable, understanding the mechanisms underlying dormant tumor cell survival is a critical priority in breast cancer research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!