Tunable adhesion and slip on a bio-mimetic sticky soft surface.

Soft Matter

Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, 721 302, West Bengal, India. and Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, West Bengal, India.

Published: November 2019

Simultaneous tuning of wettability and adhesion of a surface requires intricate procedures for altering the interfacial structures. Here, we present a simple method for preparing a stable slippery surface, with an intrinsic capability of varying its adhesion characteristics. Cross-linked PDMS, an inherent hydrophobic material commonly used for microfluidic applications, is used to replicate the structures on the surface of a rose petal which acts as a high adhesion solid base and is subsequently oleoplaned with silicone oil. Our results demonstrate that the complex hierarchical rose petal structures can arrest dewetting of the silicone oil on the cross linked PDMS base by anchoring the oil film strongly even under flow. Further, by tuning the extent of submergence of the rose petal structures with silicone oil, we could alter the adhesion characteristics of the surface on demand, while retaining its slippery characteristics for a wide range of the pertinent parameters. We have also demonstrated the possible fabrication of gradient adhesion surfaces. This, in turn, may find a wide variety of applications in water harvesting, droplet maneuverability and no-loss transportation in resource-limited settings.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm01680eDOI Listing

Publication Analysis

Top Keywords

rose petal
12
silicone oil
12
adhesion characteristics
8
petal structures
8
surface
5
adhesion
5
tunable adhesion
4
adhesion slip
4
slip bio-mimetic
4
bio-mimetic sticky
4

Similar Publications

Exogenous Melatonin Boosts Heat Tolerance in via Modulation.

Plants (Basel)

December 2024

College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China.

is one the most commonly cultivated ornamental plant of economic importance and faces major challenges under heat stress. Melatonin has been widely shown to regulate plant stress response; however, the exact mechanism involved in heat stress in has yet to be determined. Here, we observed that in vitro plantlets supplemented with melatonin in the culture medium exhibited higher chlorophyll content, relative ion leakage, and fresh weight after 12 d of high-temperature treatment; the optimal concentration was established at 5 mg/L.

View Article and Find Full Text PDF

The highly valued oil of Mill. (Rosaceae), widely used in high perfumery, cosmetics, and other spheres of human life, obliges us to know and study the safety profile of the product obtained from the water-steam distillation of fresh rose petals. The genotoxicity of the essential oil (EsO) has not been thoroughly studied despite its wide range of applications.

View Article and Find Full Text PDF

Roses () are a famous flower with high ornamental and economic value. But the petals of roses are usually pink and purple, which restricted its application in garden settings. Flavonols and anthocyanins are crucial secondary metabolites related to flower pigmentation in plants.

View Article and Find Full Text PDF
Article Synopsis
  • Excessive plastic use can harm human health, specifically by affecting the respiratory and circulatory systems, making plastic detection crucial for food safety and environmental protection.
  • Researchers developed a roseate petal homochiral nanogold (Au RHNs) substrate for detecting plastics in water using surface-enhanced Raman scattering (SERS), achieving a high mean enhancement factor of 8.4696.
  • This substrate effectively detected polyethylene (PE) and polyvinyl chloride (PVC) in various water samples, showing strong potential for real-world applications in monitoring plastic pollution.
View Article and Find Full Text PDF

Purpose: Fetal nucleated red blood cells (fNRBCs) in the peripheral blood of pregnant women contain comprehensive fetal genetic information, making them an ideal target for non-invasive prenatal diagnosis (NIPD). However, challenges in identifying, enriching, and detecting fNRBCs limit their diagnostic potential.

Methods: To overcome these obstacles, we developed a novel biomimetic chip, replicating the micro-nano structure of red rose petals on polydimethylsiloxane (PDMS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!