The quantum well (QW) realizes new functionalities due to the discrete electronic energy levels formed in the well-shaped potential. Magnetic tunnel junctions (MTJs) combined with a quasi-QW structure of Cr/ultrathin-Fe/MgAlO(001)/Fe, in which the Cr quasi-barrier layer confines up-spin electrons to the Fe well, are prepared with perfectly lattice-matched interfaces and atomic layer number control. Resonant peaks are clearly observed in the differential conductance of the MTJs due to the formation of QWs. Furthermore, enhanced tunnel magnetoresistance (TMR) peaks at the resonant bias voltages are realized for the MTJs at room temperature, i.e., it is observed that TMR ratios at specific and even high bias-voltages ( ) are larger than zero-bias TMR ratios for the MTJs with odd Fe atomic layers, in contrast to the earlier experimental studies. In addition, a new finding in this study is unique sign changes in the temperature coefficient of resistance (TCR) depending on the Fe thickness and , which is interpreted as a signature of the QW formation of Δ symmetry electronic states. The present study suggests that the spin-dependent resonant tunneling via the QWs formed in Cr/ultrathin-Fe/MgAlO/Fe structures should open a new pathway to achieve a large TMR at practically high .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794625PMC
http://dx.doi.org/10.1002/advs.201901438DOI Listing

Publication Analysis

Top Keywords

tunnel magnetoresistance
8
tmr ratios
8
realizing room-temperature
4
resonant
4
room-temperature resonant
4
resonant tunnel
4
magnetoresistance cr/fe/mgalo
4
cr/fe/mgalo quasi-quantum
4
quasi-quantum well
4
well structures
4

Similar Publications

Observation of Large Low-Field Magnetoresistance in Layered (NdNiO):NdO Films at High Temperatures.

Adv Mater

January 2025

State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.

Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures.

View Article and Find Full Text PDF

Employing density functional theory for ground state quantum mechanical calculations and the non-equilibrium Green's function method for transport calculations, we investigate the potential of CdS, ZnS, CdZnS, and ZnCdS as tunnel barriers in magnetic tunnel junctions for spintronics. Based on the finding that the valence band edges of these semiconductors are dominated by p orbitals and the conduction band edges by s orbitals, we show that symmetry filtering of the Bloch states in magnetic tunnel junctions with Fe electrodes results in high tunneling magnetoresistances and high spin-polarized current (up to two orders of magnitude higher than in the case of the Fe/MgO/Fe magnetic tunnel junction).

View Article and Find Full Text PDF

A High-Precision Temperature Compensation Method for TMR Weak Current Sensors Based on FPGA.

Micromachines (Basel)

November 2024

State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.

Tunnel magnetoresistance (TMR) sensors, known for their high sensitivity, efficiency, and compact size, are ideal for detecting weak currents, particularly leakage currents in smart grids. However, temperature variations can negatively impact their accuracy. This work investigates the effects of temperature variations on measurement accuracy.

View Article and Find Full Text PDF

Pseudotunnel Magnetoresistance in Twisted van der Waals FeGeTe Homojunctions.

Adv Mater

January 2025

Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan.

Twistronics, a novel engineering approach involving the alignment of van der Waals (vdW) integrated two-dimensional materials at specific angles, has recently attracted significant attention. Novel nontrivial phenomena have been demonstrated in twisted vdW junctions (the so-called magic angle), such as unconventional superconductivity, topological phases, and magnetism. However, there have been only few reports on integrated vdW layers with large twist angles θ, such as twisted interfacial Josephson junctions using high-temperature superconductors.

View Article and Find Full Text PDF

Spin and valley polarizations (P and P) and tunneling magnetoresistance (TMR) are demonstrated in the ferromagnetic/barrier/normal/barrier/ferromagnetic WSe junction, with the gate voltage and off-resonant circularly polarized light (CPL) applied to the two barrier regions. The minimum incident energy of non-zero spin- and valley-resolved conductance has been derived, which is consistent with numerical calculations and depends on the electric potential U, CPL intensity ΔΩ, exchange field h, and magnetization configuration: parallel (P) or antiparallel (AP). For the P (AP) configuration, the energy region with P = -1 or P = 1 is wider (narrower) and increases with ΔΩ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!