Cotranscriptional folding is an obligate step of RNA biogenesis that can guide RNA structure formation and function through transient intermediate folds. This process is particularly important for transcriptional riboswitches in which the formation of ligand-dependent structures during transcription regulates downstream gene expression. However, the intermediate structures that comprise cotranscriptional RNA folding pathways, and the mechanisms that enable transit between them, remain largely unknown. Here, we determine the series of cotranscriptional folds and rearrangements that mediate antitermination by the Clostridium beijerinckii pfl ZTP riboswitch in response to the purine biosynthetic intermediate ZMP. We uncover sequence and structural determinants that modulate an internal RNA strand displacement process and identify biases within natural ZTP riboswitch sequences that promote on-pathway folding. Our findings establish a mechanism for pfl riboswitch antitermination and suggest general strategies by which nascent RNA molecules navigate cotranscriptional folding pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814202 | PMC |
http://dx.doi.org/10.1038/s41589-019-0382-7 | DOI Listing |
Nat Commun
January 2025
Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA.
Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity to ligand (EC) is controlled is critical to explain how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover roles by which RNA folding dynamics control riboswitch sensitivity in cells.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA.
Cotranscriptional RNA folding pathways typically involve the sequential formation of folding intermediates. Existing methods for cotranscriptional RNA structure probing map the structure of nascent RNA in the context of a terminally arrested transcription elongation complex. Consequently, the rearrangement of RNA structures as nucleotides are added to the transcript can be inferred but is not assessed directly.
View Article and Find Full Text PDFbioRxiv
September 2024
Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA.
The challenge of targeting RNA with small molecules necessitates a better understanding of RNA-ligand interaction mechanisms. However, the dynamic nature of nucleic acids, their ligand-induced stabilization, and how conformational changes influence gene expression pose significant difficulties for experimental investigation. This work employs a combination of computational and experimental methods to address these challenges.
View Article and Find Full Text PDFbioRxiv
March 2024
Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA.
Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity is controlled is critical to understanding how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover new roles by which RNA folding dynamics control riboswitch sensitivity in cells.
View Article and Find Full Text PDFbioRxiv
December 2023
Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA.
RNA can fold into structures that mediate diverse cellular functions. Understanding how RNA primary sequence directs the formation of functional structures requires methods that can comprehensively assess how changes in an RNA sequence affect its structure and function. Here we have developed a platform for performing high-throughput cotranscriptional RNA biochemical assays, called Transcription Elongation Complex display (TECdisplay).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!