Soil-borne fungal pathogens that cause crop disease are major threats to agriculture worldwide. Here, we identified a secretory polysaccharide deacetylase (PDA1) from the soil-borne fungus Verticillium dahliae, the most notorious plant pathogen of the Verticillium genus, that facilitates virulence through direct deacetylation of chitin oligomers whose N-acetyl group contributes to host lysine motif (LysM)-containing receptor perception for ligand-triggered immunity. Polysaccharide deacetylases are widely present in fungi, bacteria, insects and marine invertebrates and have been reported to possess diverse functions in developmental processes rather than virulence. A phylogenetics analysis of more than 5,000 fungal proteins with conserved polysaccharide deacetylase domains showed that the V. dahliae PDA1-containing subtree includes a large number of proteins from the Verticillium genus as well as the Fusarium genus, another group of characterized soil-borne fungal pathogens, suggesting that soil-borne fungal pathogens have adopted chitin deacetylation as a major virulence strategy. We showed that a Fusarium PDA1 is required for virulence in cotton plants. This study reveals a substantial virulence function role of polysaccharide deacetylases in pathogenic fungi and demonstrates a subtle mechanism whereby deacetylation of chitin oligomers converts them to ligand-inactive chitosan, representing a common strategy of preventing chitin-triggered host immunity by soil-borne fungal pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41477-019-0527-4 | DOI Listing |
Ecol Lett
January 2025
Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany.
Trait-based approaches have been increasingly used to relate plants to soil microbial communities. Using the recently described root economics space as an approach to explain the structure of soil-borne fungal communities, our study in a grassland diversity experiment reveals distinct root trait strategies at the plant community level. In addition to significant effects of plant species richness, we show that the collaboration and conservation gradient are strong drivers of the composition of the different guilds of soil fungi.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Forest Pathogen Center (FPC), College of Forestry, Fujian Agricultural and Forestry University, Fuzhou 350002, China.
The ascomycete family Nectriaceae includes soil-borne saprobes, plant pathogens and human pathogens, biodegraders, and biocontrol agents for industrial and commercial applications. is a native tree species that is widely planted in southern China for landscaping purposes. During a routine survey of diseases in southern China, disease spots were frequently observed on the leaves of trees planted close to .
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Embrapa Mandioca e Fruticultura, Rua Embrapa s/n CP 007, Bairro Chapadinha, Cruz das Almas 44380-000, Bahia, Brazil.
wilt is a soil borne fungal disease that has devastated banana production in plantations around the world. Most Cavendish-type bananas are susceptible to strains of f. sp.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Institute of Vegetable, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China.
wilt in eggplant caused by f. sp. is a major devastating soil-borne disease on a worldwide scale.
View Article and Find Full Text PDFPlant Dis
December 2024
College of Natural Sciences, Kunsan National University, Department of Biology, 558 Daehak-ro, Gunsan, Korea (the Republic of), 54150;
Sclerotium rolfsii (=Agroathelia rolfsii) and S. delphinii are globally ubiquitous and prevalent soil-borne pathogens. These species are distinguishable by the morphology of their sclerotia formed on artificial media.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!