Cortical modulation of nociception by galvanic vestibular stimulation: A potential clinical tool?

Brain Stimul

Central Integration of Pain (NeuroPain), Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, F-69677, France; Centre D'évaluation et de Traitement de La Douleur, Hôpital Neurologique, Lyon, F-69000, France.

Published: June 2020

Objective: Vestibular afferents converge with nociceptive ones within the posterior insula, and can therefore modulate nociception. Consistent with this hypothesis, caloric vestibular stimulation (CVS) has been shown to reduce experimental and clinical pain. Since CVS can induce undesirable effects in a proportion of patients, here we explored an alternative means to activate non-invasively the vestibular pathways using innocuous bi-mastoid galvanic stimulation (GVS), and assessed its effects on experimental pain.

Methods: Sixteen healthy volunteers participated in this study. Experimental pain was induced by noxious laser-heat stimuli to the left hand while recording pain ratings and related brain potentials (LEPs). We evaluated changes of these indices during left- or right-anodal GVS (cathode on contralateral mastoid), and contrasted them with those during sham GVS, optokinetic vestibular stimulation (OKS) using virtual reality, and attentional distraction to ascertain the vestibular-specific analgesic effects of GVS.

Results: GVS elicited brief sensations of head/trunk deviation, inoffensive to all participants. Both active GVS conditions showed analgesic effects, greater for the right anodal stimulation. OKS was helpful to attain significant LEP reductions during the left-anodal stimulation. Neither sham-GVS nor the distraction task were able to modulate significantly pain ratings or LEPs.

Conclusions: GVS appeared as a well-tolerated and powerful procedure for the relief of experimental pain, probably through physiological interaction within insular nociceptive networks. Either isolated or in combination with other types of vestibular activation (e.g., optokinetic stimuli), GVS deserves being tested in clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brs.2019.10.009DOI Listing

Publication Analysis

Top Keywords

vestibular stimulation
12
experimental pain
8
pain ratings
8
stimulation oks
8
analgesic effects
8
gvs
7
vestibular
6
stimulation
6
pain
5
cortical modulation
4

Similar Publications

Background: High-field magnetic resonance imaging (MRI) is a powerful diagnostic tool but can induce unintended physiological effects, such as nystagmus and dizziness, potentially compromising the comfort and safety of individuals undergoing imaging. These effects likely result from the Lorentz force, which arises from the interaction between the MRI's static magnetic field and electrical currents in the inner ear. Yet, the Lorentz force hypothesis fails to explain observed eye movement patterns in healthy adults fully.

View Article and Find Full Text PDF

Introduction: Vestibular migraine (VM), particularly its chronic variant, poses a diagnostic challenge. Patients suffering from VM may not have the characteristic headaches associated with the dizziness. In these cases, a marker for migraine pathology in general could help appropriately diagnose certain types of dizziness as migrainous despite these patients not meeting current diagnostic criteria for VM.

View Article and Find Full Text PDF

Integrating vestibular and visual cues for verticality perception.

Exp Brain Res

January 2025

School of Psychological Sciences, Birkbeck University of London, Malet St, London, WC1E 7HX, UK.

Verticality is the perception of what's upright relative to gravity. The vestibular system provides information about the head's orientation relative to gravity, while visual cues influence the perception of external objects' alignment with the vertical. According to Bayesian integration, the perception of verticality depends on the relative reliability of visual and vestibular cues.

View Article and Find Full Text PDF

Vestibular dysfunction has been reported as a potential cause in adolescent idiopathic scoliosis (AIS). However, it remained unclear how stochastic galvanic vestibular stimulation (GVS) affected kinetic performance of patients with AIS. This study aimed to investigate the effect of stochastic GVS on ground reaction forces (GRF) measures during obstacle negotiation among patients with AIS.

View Article and Find Full Text PDF

Role of transcutaneous electrical nerve stimulation in alleviation of tinnitus in normal hearing subjects.

Eur Arch Otorhinolaryngol

January 2025

Audio-vestibular Medicine unit, department of Ear, Nose and throat, Faculty of Medicine, Assiut University, Assiut, Egypt.

Background: Subjective tinnitus is characterized by perception of sound in the absence of any external or internal acoustic stimuli. Many approaches have been developed over the years to treat tinnitus (medical and nonmedical). However, no consensus has been reached on the optimal therapeutic approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!