Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brs.2019.10.008DOI Listing

Publication Analysis

Top Keywords

deep transcranial
4
transcranial magnetic
4
magnetic stimulation
4
stimulation patients
4
patients intracranial
4
intracranial aneurysm
4
aneurysm clips
4
clips case
4
case report
4
report guidelines
4

Similar Publications

Neuromodulation stands as a cutting-edge approach in the fields of neuroscience and therapeutic intervention typically involving the regulation of neural activity through physical and chemical stimuli. The purpose of this review is to provide an overview and evaluation of different neuromodulation techniques, anticipating a clearer understanding of the future developmental trajectories and the challenges faced within the domain of neuromodulation that can be achieved. This review categorizes neuromodulation techniques into genetic neuromodulation methods (including optogenetics, chemogenetics, sonogenetics, and magnetogenetics) and non-genetic neuromodulation methods (including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, transcranial ultrasound stimulation, photobiomodulation therapy, infrared neuromodulation, electromagnetic stimulation, sensory stimulation therapy, and multi-physical-factor stimulation techniques).

View Article and Find Full Text PDF

Parkinson's Disease (PD) is a progressive neurodegenerative disorder characterized by a range of motor and non-motor symptoms (NMSs) that significantly impact patients' quality of life. This review aims to synthesize the current literature on the application of brain stimulation techniques, including non-invasive methods such as transcranial magnetic stimulation (TMS), transcranial electrical stimulation (tES), transcranial focused ultrasound stimulation (tFUS), and transcutaneous vagus nerve stimulation (tVNS), as well as invasive approaches like deep brain stimulation (DBS). We explore the efficacy and safety profiles of these techniques in alleviating both motor impairments, such as bradykinesia and rigidity, and non-motor symptoms, including cognitive decline, depression, and impulse control disorders.

View Article and Find Full Text PDF

Background And Aims: The lack of therapeutic response characterizes treatment-resistant depression despite undergoing at least two adequate monotherapy trials with medications from distinct pharmacologic classes. The inability to attain remission in patients diagnosed with major depressive disorder (MDD) is a significant issue of concern within public health. Therefore, the management of treatment-resistant depression (TRD) poses significant obstacles for both patients and healthcare professionals.

View Article and Find Full Text PDF

Utilizing a multi-task deep learning framework, this study generated synthetic CT (sCT) images from a limited dataset of Ultrashort echo time (UTE) MRI for transcranial focused ultrasound (tFUS) planning. A 3D Transformer U-Net was employed to produce sCT images that closely replicated actual CT scans, demonstrated by an average Dice coefficient of 0.868 for morphological accuracy.

View Article and Find Full Text PDF

Background: F-8-coil repetitive transcranial magnetic stimulation (rTMS) and H-1-coil deep repetitive transcranial magnetic stimulation (dTMS) have been indicated for the treatment of major depressive disorder (MDD) in adult patients by applying different treatment protocols. Nevertheless, the evidence for long-term electrophysiological alterations in the cortex following prolonged TMS interventions, as assessed by quantitative electroencephalography (qEEG), remains insufficiently explored. This study aims to demonstrate the qEEG-based distinctions between rTMS and dTMS in the management of depression and to evaluate the potential correlation between the electrophysiological changes induced by these two distinct TMS interventions and the clinical improvement in depressive and anxiety symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!