Graft modification of starch nanoparticles using nitroxide-mediated polymerization and the grafting from approach.

Carbohydr Polym

Department of Chemical Engineering, Queen's University, 19 Division St, Kingston, Ontario K7L 3N6, Canada. Electronic address:

Published: January 2020

Starch nanoparticles (SNP) are attracting increased attention as a renewable bio-based alternative to petroleum-based polymers in the materials community. In this work, we describe the grafting from of SNP with synthetic polymers via nitroxide-mediated polymerization (NMP). Varying amounts of poly(methyl methacrylate-co-styrene) (P(MMA-co-S)), poly(methyl acrylate) (PMA) and poly(acrylic acid) (PAA) were grafted from the surface of SNP in a three-step process. The grafting of synthetic polymers from the surface of SNP was confirmed by FTIR, H NMR, elemental analysis and thermogravimetric analysis. These new tailor-made starch-based hybrid materials could find use in paper coatings, adhesives, paints, as well as in polymer latex applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2019.115384DOI Listing

Publication Analysis

Top Keywords

starch nanoparticles
8
nitroxide-mediated polymerization
8
synthetic polymers
8
surface snp
8
graft modification
4
modification starch
4
nanoparticles nitroxide-mediated
4
polymerization grafting
4
grafting approach
4
approach starch
4

Similar Publications

The prevalence of diet-related health issues has driven the demand for healthier food options, particularly those with reduced fat content. This systematic review evaluates the integration of sensory analysis in low-fat emulsion research, highlighting a significant gap in current practices. From an initial pool of 400 articles, 227 unique studies were screened, but only 15 (6.

View Article and Find Full Text PDF

Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols-such as those used to conjugate biomacromolecules (e.

View Article and Find Full Text PDF

The escalating demand for sustainable materials has been fueling the rapid proliferation of the biopolymer market. Biodegradable polymers within natural habitats predominantly undergo degradation mediated by microorganisms. These microorganisms secrete enzymes that cleave long-chain polymers into smaller fragments for metabolic assimilation.

View Article and Find Full Text PDF

Starch is one of the most abundant polysaccharides in nature and has a high potential for application in several fields, including effluent treatment as an adsorbent. Starch has a unique structure, with zones of different crystallinity and a glycosidic structure containing hydroxyl groups. This configuration allows a wide range of interactions with pollutants of different degrees of hydrophilicity, which includes from hydrogen bonding to hydrophobic interactions.

View Article and Find Full Text PDF

Preparation of Nanocomposite Biopolymer Films from Willd Starch and Their Nanostructures as a Potential Replacement for Single-Use Polymers.

Foods

December 2024

Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón esq. Paseo Tollocan s/n, Col. Residencial Colón, Toluca 50120, Estado de Mexico, Mexico.

This study explored the effect of incorporating cellulose and starch nanoparticles, obtained from the Willd plant, on the physical and chemical properties of starch-based films derived from the same plant. Additionally, the synergistic effect of combining the nanostructures was assessed. The nanocomposite biopolymer films were prepared by the casting method using 1 and 3 wt% concentrations of the nanostructures (CNCs: cellulose nanocrystals, CNFs: cellulose nanofibers, SNCs: starch nanocrystals), or their blend.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!