Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
N-doped graphene based on graphene oxide and 3,3',4,4'-tetraaminodiphenyl oxide (TADPO) was obtained using a one-step hydrothermal process. The resulting materials were fully characterized using elemental analysis, infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, X-ray diffraction, scanning electron micrographs, and transmission electron microscopy. The findings reveal that benzimidazole rings were formed during the reaction, and the mass content of nitrogen in the obtained material varied from 12.3% to 14.7%, depending on the initial concentration of TADPO. Owing to the redox activity of benzimidazole rings, the new N-doped graphene materials demonstrated a high specific capacitance, reaching 340 F g at 0.1 A g, which was significantly higher than that of the sample of reduced graphene oxide obtained under similar conditions without the use of TADPO (169 F g at 0.1 A g). The resulting material also exhibited good cyclic stability after 5000 cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2020.17388 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!