Nanoarchitectonics of metal oxide nanocrystal electrodes were developed for lithium-ion batteries. The electrodes included copper nanoparticles and doped fluorine. For the acicular nanocrystals, charge-discharge reactions progressed at 1.8 V over 100 cycles at 100 and 10 A. A 15-mmdiameter battery containing acicular nanocrystals showed capacity, coulomb efficiency, and specific capacity, respectively of 20 Ah, 98%, and ~242 mAh/g at 100 A and 40 Ah, 99%, and 484 mAh/g at 10 A. The TiO₂/SnO₂ electrode consisted of a SnO₂ sheet-assembled structure with surface layers of anatase TiO₂. The TiO₂/SnO₂ battery operated at 1.3 (100 cycles) and 1.2 (50 cycles) V at 100 and 10 A, respectively; its capacity, coulomb efficiency, and specific capacity, respectively were 50 Ah, 98%, and 161 mAh/g at 100 A and 200 Ah, 97-98%, and 643 mAh/g at 10 A. The characteristic microstructure, chemical composition, and crystal faces of both materials contributed to battery performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2020.17443 | DOI Listing |
Sci Rep
December 2024
Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang, 262700, People's Republic of China.
To enhance the volumetric energy density and initial coulombic efficiency (ICE) of titanium oxide (TiO) as anode electrode material for lithium-ion batteries (LIB), this study employed a surface-confined in-situ inter-growth mechanism to prepare a TiO embedded carbon microsphere composite. The results revealed that the composite exhibited a highly integrated structure of TiO with oxygen vacancies and carbon, along with an exceptionally small specific surface area of 11.52 m/g.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
National Research and Development Institute for Forestry "Marin Drăcea"-INCDS, 128 Boulvard Eroilor, 077190 Voluntari, Romania.
Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource.
View Article and Find Full Text PDFGels
December 2024
Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea.
Polymerizable ionic liquid-based gel polymer electrolytes (PIL-GPEs) were developed for the first time using high-energy electron beam irradiation for high-performance lithium-ion batteries (LIBs). By incorporating an imidazolium-based ionic liquid (PIL) into the polymer network, PIL-GPEs achieved high ionic conductivity (1.90 mS cm at 25 °C), a lithium transference number of 0.
View Article and Find Full Text PDFSmall
December 2024
NanoScience Technology Center, University of Central Florida Orlando, Orlando, FL, 32826, USA.
Manganese-based materials are essential for developing safe, cost-effective, and environmentally sustainable rechargeable batteries, which are critical for advancing clean energy technologies. However, the high spin state of the Mn cation triggers a pronounced Jahn-Teller effect and phase transformations during cycling, leading to structural instability and reduced electrochemical performance of the Mn-based cathodes. This review provides a fundamental understanding of the Jahn-Teller effect, highlights recent strategies to mitigate the high spin state of Mn, and offers insights into future research directions aimed at overcoming the Jahn-Teller effect to enhance the performance of next-generation Mn-based cathodes for rechargeable batteries.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Advanced Functional Nanomaterials Research Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University (A Central University), Dr. R. Venkataraman Nagar, Kalapet, Puducherry 605014, India.
The development of quasi-solid-state lithium metal batteries (QSSLMBs) is hindered by inadequate interfacial contact, poor wettability between electrodes and quasi-solid-state electrolytes, and significant volume changes during long-term cycling, leading to safety risks and cataclysmic failures. Here, we report an innovative approach to enhance interfacial properties through the construction of QSSLMBs. A multilayer design integrates a microwave-synthesized LiAlTi(PO) (LATP) ceramic electrolyte, which is surface-coated with a lithiophilic conductive ink comprising VS and disulfonated functionalized graphene nanosheets (VS-DSGNS) using a low-cost nail-polish binder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!