This review highlights new findings that have deepened our understanding of the mechanisms of leukemogenesis, therapy and resistance in acute promyelocytic leukemia (APL). Promyelocytic leukemia-retinoic acid receptor α (PML-RARa) sets the cellular landscape of acute promyelocytic leukemia (APL) by repressing the transcription of RARa target genes and disrupting PML-NBs. The RAR receptors control the homeostasis of tissue growth, modeling and regeneration, and PML-NBs are involved in self-renewal of normal and cancer stem cells, DNA damage response, senescence and stress response. The additional somatic mutations in APL mainly involve FLT3, WT1, NRAS, KRAS, ARID1B and ARID1A genes. The treatment outcomes in patients with newly diagnosed APL improved dramatically since the advent of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). ATRA activates the transcription of blocked genes and degrades PML-RARα, while ATO degrades PML-RARa by promoting apoptosis and has a pro-oxidant effect. The resistance to ATRA and ATO may derive from the mutations in the RARa ligand binding domain (LBD) and in the PML-B2 domain of PML-RARa, but such mutations cannot explain the majority of resistances experienced in the clinic, globally accounting for 5-10% of cases. Several studies are ongoing to unravel clonal evolution and resistance, suggesting the therapeutic potential of new retinoid molecules and combinatorial treatments of ATRA or ATO with different drugs acting through alternative mechanisms of action, which may lead to synergistic effects on growth control or the induction of apoptosis in APL cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826966PMC
http://dx.doi.org/10.3390/cancers11101591DOI Listing

Publication Analysis

Top Keywords

acute promyelocytic
12
promyelocytic leukemia
12
mechanisms leukemogenesis
8
leukemia apl
8
atra ato
8
apl
5
leukemia update
4
update mechanisms
4
resistance
4
leukemogenesis resistance
4

Similar Publications

Unlabelled: Acute myeloid leukemia (AML) is the most frequent type of leukemia in adults and has a high mortality burden. Patients over 60 years of age infrequently receive high-intensity chemotherapy.

Aim: To describe the clinical characteristics and evaluate the survival in patients with AML, focusing on patients over 60 years.

View Article and Find Full Text PDF

Telomere shortening in donor cell-derived acute promyelocytic leukemia after allogeneic hematopoietic stem cell transplantation: a case report.

Ann Hematol

January 2025

Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan.

Donor cell leukemia (DCL), in which malignancy evolves from donor's stem cells, is an infrequent complication of allogeneic hematopoietic stem cell transplantation. Acute promyelocytic leukemia (APL) derived from donor cell is extremely rare and only four cases have been reported to date. Herein we report a case of donor cell-derived APL developing 32 months after haploidentical peripheral blood stem cell transplantation using posttransplant cyclophosphamide for myelodysplastic syndromes.

View Article and Find Full Text PDF

Introduction: NUP98 rearrangements are rare in acute leukemias and portend a poor prognosis.

Methods: This study explored clinicopathologic and molecular features of five patients with NUP98 rearranged (NUP98-r) acute leukemias, including three females and two males with a median age of 34 years.

Results: NUP98 fusion partners were associated with distinctive leukemia characteristics and biology.

View Article and Find Full Text PDF

Acute promyelocytic leukemia (APL) is driven by the specific fusion gene PML-RARA produced by chromosomal translocation. Three classic isoforms, L, V, and S, are found in more than 95% of APL patients. However, atypical PML-RARA isoforms are usually associated with uncertain disease progression and treatment prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!