The potential of mesenchymal stem cells (MSCs) for implantology and cell-based therapy represents one of the major ongoing research subjects within the last decades. In bone regeneration applications, the various environmental factors including bioactive compounds such as growth factors, chemicals and physical characteristics of biointerfaces are the key factors in controlling and regulating osteogenic differentiation from MSCs. In our study, we have investigated the influence of Lactoferrin (Lf) and Hydroxyapatite (HA) embedded within a biodegradable PEG-PCL copolymer on the osteogenic fate of MSCs, previous studies revealing an anti-inflammatory potential of the coating and osteogenic differentiation of murine pre-osteoblast cells. The copolymer matrix was obtained by the Matrix Assisted Pulsed Laser Evaporation technique (MAPLE) and the composite layers containing the bioactive compounds (Lf, HA, and Lf-HA) were characterised by Scanning Electron Microscopy and Atomic Force Microscopy. Energy-dispersive X-ray spectroscopy contact angle and surface energy of the analysed coatings were also measured. The characteristics of the composite surfaces were correlated with the viability, proliferation, and morphology of human MSCs (hMSCs) cultured on the developed coatings. All surfaces were found not to exhibit toxicity, as confirmed by the LIVE/DEAD assay. The Lf-HA composite exhibited an increase in osteogenic differentiation of hMSCs, results supported by alkaline phosphatase and mineralisation assays. This is the first report of the capacity of biodegradable composite layers containing Lf to induce osteogenic differentiation from hMSCs, a property revealing its potential for application in bone regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829495PMC
http://dx.doi.org/10.3390/ma12203414DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
16
mesenchymal stem
8
bone regeneration
8
bioactive compounds
8
composite layers
8
differentiation hmscs
8
composite
5
osteogenic
5
human mesenchymal
4
stem cell
4

Similar Publications

Bone formation is a complex multi-factor process of bone defect healing. Oxidative stress (OS) is predisposed to induce regulatory cell death (RCD), such as ferroptosis. At present, the antioxidant effects of Crocin on erastin induced oxidative damage were studied.

View Article and Find Full Text PDF

Background: Peri-implantitis is an inflammatory bone disease that seriously affects the health of dental implants. Pyroptosis plays an important role in peri-implantitis and inhibition of pyroptosis may point out a new direction for treating the disease. The long non-coding RNA Negative Regulator of Interferon Response (lncRNA NRIR) is closely related to peri-implantitis and may be involved in the process of pyroptosis.

View Article and Find Full Text PDF

The effect of low energy LED red light on osteogenetic differentiation of periodontal ligament stem cell via the ERK5 signal pathway.

Lasers Med Sci

January 2025

The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.

The purpose of this study was to examine how low-energy LED red light influences the early to middle stage of osteogenic differentiation of periodontal ligament stem cells (PDLSCs) via the ERK5 signaling pathway.  METHODS: PDLSCs were extracted from periodontal membrane tissue using enzymatic digestion. At three time points of 7, 10, and 14 days after irradiation with 5J/cm LED red light, the expression levels of early to middle-stage osteogenic-related genes ALP, Col-1, BSP, and OPN were detected by real-time fluorescence quantitative PCR(qRT-PCR) in both control and osteogenesis experimental groups.

View Article and Find Full Text PDF

Background/purpose: Heat stress is essential for improving the efficacy of mesenchymal stem cell (MSC)-based regeneration medicine. However, it is still unclear whether and how heat stress influences the differentiation of stem cells from apical papilla (SCAPs). This research aimed to explore the potential mechanism of glucose-regulated protein 78 (GRP78) in regulating differentiation under heat stress in SCAPs.

View Article and Find Full Text PDF

Background/purpose: Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!