There have been mixed results regarding the relationship among short chain fatty acids (SCFAs), microbiota, and obesity in human studies. We selected studies that provided data on SCFA levels or fecal microbiota abundance in obese and nonobese individuals and then combined the published estimates using a random-effects meta-analysis. Obese individuals had significantly higher fecal concentrations of acetate (SMD (standardized mean differences) = 0.87, 95% CI (confidence interva) = 0.24-1.50, (-squared) = 88.5), propionate (SMD = 0.86, 95% CI = 0.35-1.36, = 82.3%), and butyrate (SMD = 0.78, 95% CI = 0.29-1.27, = 81.7%) than nonobese controls. The subgroup analyses showed no evidence of heterogeneity among obese individuals with a BMI >30 kg/m ( = 0.0%). At the phylum level, the abundance of fecal microbiota was reduced in obese compared to nonobese individuals, but the difference was not statistically significant (Bacteroidetes phylum, SMD = -0.36, 95% CI = -0.73-0.01; Firmicutes phylum, SMD = -0.10, 95% CI = -0.31-0.10). The currently available human case-control studies show that obesity is associated with high levels of SCFA but not gut microbiota richness at the phylum level. Additional well-designed studies with a considerable sample size are needed to clarify whether this association is causal, but it is also necessary to identify additional contributors to SCFA production, absorption, and excretion in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835694 | PMC |
http://dx.doi.org/10.3390/nu11102512 | DOI Listing |
Transl Psychiatry
January 2025
Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
Rising studies have consistently reported gut bacteriome alterations in schizophrenia (SCZ). However, little is known about the role of the gut virome on shaping the gut bacteriome in SCZ. Here in, we sequenced the fecal virome, bacteriome, and host peripheral metabolome in 49 SCZ patients and 49 health controls (HCs).
View Article and Find Full Text PDFEnviron Pollut
January 2025
Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China. Electronic address:
Microplastics (MPs) have been found to interfere with the gut microbiota and compromise the integrity of the gut barrier. Excessive exposure to MPs markedly elevates the risk of cardiovascular disease, yet their influence on hypertension remains elusive, calling for investigation into their potential impacts on blood pressure (BP) regulation. In the present study, an increase in the concentration of MPs was observed in the fecal samples of individuals suffering from hypertension, as compared to the controls.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary. Electronic address:
Comorbidities between gastrointestinal diseases and psychiatric disorders have been widely reported, with the gut-brain axis implicated as a potential biological basis. Thus, dysbiosis may play an important role in the etiology of schizophrenia, which is barely detected. Triple-hit Wisket model rats exhibit various schizophrenia-like behavioral phenotypes.
View Article and Find Full Text PDFCell Metab
January 2025
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. Electronic address:
Akkermansia muciniphila is a promising target for managing obesity and type 2 diabetes (T2D), but human studies are limited. We conducted a 12-week randomized, double-blind, placebo-controlled trial involving 58 participants with overweight or obese T2D, who received A. muciniphila (AKK-WST01) or placebo, along with routine lifestyle guidance.
View Article and Find Full Text PDFThe gastrointestinal microbiome influences physiological functions and is altered in a variety of diseases. The causality of "dysbiosis" in the pathogenesis is not always proven; association studies are often involved. Patients with IBD, bacteria, fungi, bacteriophages, and archaea show disease-typical patterns associated with metabolome disturbances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!