Nanomechanical Characterization of Vertical Nanopillars Using an MEMS-SPM Nano-Bending Testing Platform.

Sensors (Basel)

Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany.

Published: October 2019

Nanomechanical characterization of vertically aligned micro- and nanopillars plays an important role in quality control of pillar-based sensors and devices. A microelectromechanical system based scanning probe microscope (MEMS-SPM) has been developed for quantitative measurement of the bending stiffness of micro- and nanopillars with high aspect ratios. The MEMS-SPM exhibits large in-plane displacement with subnanometric resolution and medium probing force beyond 100 micro-Newtons. A proof-of-principle experimental setup using an MEMS-SPM prototype has been built to experimentally determine the in-plane bending stiffness of silicon nanopillars with an aspect ratio higher than 10. Comparison between the experimental results and the analytical and FEM evaluation has been demonstrated. Measurement uncertainty analysis indicates that this nano-bending system is able to determine the pillar bending stiffness with an uncertainty better than 5%, provided that the pillars' stiffness is close to the suspending stiffness of the MEMS-SPM. The MEMS-SPM measurement setup is capable of on-chip quantitative nanomechanical characterization of pillar-like nano-objects fabricated out of different materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832273PMC
http://dx.doi.org/10.3390/s19204529DOI Listing

Publication Analysis

Top Keywords

nanomechanical characterization
12
bending stiffness
12
micro- nanopillars
8
mems-spm
6
stiffness
5
characterization vertical
4
nanopillars
4
vertical nanopillars
4
nanopillars mems-spm
4
mems-spm nano-bending
4

Similar Publications

Nanomechanical Characterization of an Antiferromagnetic Topological Insulator.

Nano Lett

January 2025

Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, United States.

The antiferromagnetic topological insulator MnBiTe (MBT) exhibits an ideal platform for investigating unique topological and magnetic properties. While the transport characteristics of magnetic phase transitions in the MBT materials have been extensively studied, the understanding of their mechanical properties and magneto-mechanical coupling remains limited. Here, we utilize nanoelectromechanical systems to probe the intrinsic magnetism in MBT thin flakes through magnetostrictive coupling.

View Article and Find Full Text PDF
Article Synopsis
  • Electric quadrupole traps effectively levitate charged objects, from protons to small particles, influencing their rotational behavior when charge distribution varies.
  • Experiments reveal a shift in motion for microparticles, transitioning from librational to synchronized rotation with the trap drive due to torque effects from the electric quadrupole.
  • This technique showcases versatility by spinning various particles like silicon microrods and microdiamonds, with the latter enabling detailed motion analysis through embedded nitrogen vacancy centers, promising advances in levitated quantum nanomechanics.
View Article and Find Full Text PDF

Photosensitization has a wide range of applications in vastly distant fields. Three key components must be present at the same time to trigger the related photodynamic effect: light, the photosensitizer (PS) and oxygen. Irradiating the sensitizer leads to the formation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Endometriosis is a chronic inflammatory condition characterized by the presence of endometrium-like tissue outside the uterus, primarily affecting pelvic organs and tissues. In this study, we explored platelet activation in endometriosis. We utilized the STRING database to analyze the functional interactions among proteins previously identified in small extracellular vesicles (EVs) isolated from the peritoneal fluid of endometriosis patients and controls.

View Article and Find Full Text PDF

How do roses build failure-resistant anchoring tools?

PNAS Nexus

December 2024

Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.

Rose prickles are small-scale, plant-based anchoring tools of multifunctional biomechanical roles, combining physical defense against herbivores and growth support on surrounding objects. By employing multiscale structural observations, nanomechanical characterizations, and finite-element simulations, we unveil that the dog rose ( Linnaeus) prickle incorporates structural-mechanical modifications at different length scales, resulting in macroscopic stress-locking effects that provide the prickle extreme damage-resistant capabilities and secure its functional form against catastrophic failures. These functional design strategies, unique to plant-based biomechanical tools, may promote futuristic micro-engineered anchoring platforms for micro-robotics locomotion, biomedical microinjection, and micromechanical systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!