Nanomechanical characterization of vertically aligned micro- and nanopillars plays an important role in quality control of pillar-based sensors and devices. A microelectromechanical system based scanning probe microscope (MEMS-SPM) has been developed for quantitative measurement of the bending stiffness of micro- and nanopillars with high aspect ratios. The MEMS-SPM exhibits large in-plane displacement with subnanometric resolution and medium probing force beyond 100 micro-Newtons. A proof-of-principle experimental setup using an MEMS-SPM prototype has been built to experimentally determine the in-plane bending stiffness of silicon nanopillars with an aspect ratio higher than 10. Comparison between the experimental results and the analytical and FEM evaluation has been demonstrated. Measurement uncertainty analysis indicates that this nano-bending system is able to determine the pillar bending stiffness with an uncertainty better than 5%, provided that the pillars' stiffness is close to the suspending stiffness of the MEMS-SPM. The MEMS-SPM measurement setup is capable of on-chip quantitative nanomechanical characterization of pillar-like nano-objects fabricated out of different materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832273 | PMC |
http://dx.doi.org/10.3390/s19204529 | DOI Listing |
Nano Lett
January 2025
Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, United States.
The antiferromagnetic topological insulator MnBiTe (MBT) exhibits an ideal platform for investigating unique topological and magnetic properties. While the transport characteristics of magnetic phase transitions in the MBT materials have been extensively studied, the understanding of their mechanical properties and magneto-mechanical coupling remains limited. Here, we utilize nanoelectromechanical systems to probe the intrinsic magnetism in MBT thin flakes through magnetostrictive coupling.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Laboratoire De Physique de l'École Normale Supérieure, ENS, PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75005 Paris, France.
Sci Rep
January 2025
Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
Photosensitization has a wide range of applications in vastly distant fields. Three key components must be present at the same time to trigger the related photodynamic effect: light, the photosensitizer (PS) and oxygen. Irradiating the sensitizer leads to the formation of reactive oxygen species (ROS).
View Article and Find Full Text PDFFASEB J
December 2024
Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.
Endometriosis is a chronic inflammatory condition characterized by the presence of endometrium-like tissue outside the uterus, primarily affecting pelvic organs and tissues. In this study, we explored platelet activation in endometriosis. We utilized the STRING database to analyze the functional interactions among proteins previously identified in small extracellular vesicles (EVs) isolated from the peritoneal fluid of endometriosis patients and controls.
View Article and Find Full Text PDFPNAS Nexus
December 2024
Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
Rose prickles are small-scale, plant-based anchoring tools of multifunctional biomechanical roles, combining physical defense against herbivores and growth support on surrounding objects. By employing multiscale structural observations, nanomechanical characterizations, and finite-element simulations, we unveil that the dog rose ( Linnaeus) prickle incorporates structural-mechanical modifications at different length scales, resulting in macroscopic stress-locking effects that provide the prickle extreme damage-resistant capabilities and secure its functional form against catastrophic failures. These functional design strategies, unique to plant-based biomechanical tools, may promote futuristic micro-engineered anchoring platforms for micro-robotics locomotion, biomedical microinjection, and micromechanical systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!