Persistent and transgenerational effects of raw and ozonated oil sands process-affected water exposure on a model vertebrate, the zebrafish.

Sci Total Environ

Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.

Published: November 2019

Exposure to oil sands process-affected water (OSPW), a by-product of Canadian oil sands mining operations, can cause both acute and chronic adverse effects in aquatic life. Ozonation effectively degrades naphthenic acids in OSPW, mitigating some of the toxicological effects of exposure. In this study we examined the effect of developmental exposure to raw and ozonated OSPW had on the breeding success, prey capture, and alarm cue response in fish months/years after exposure and the transgenerational effect exposure had on gene expression, global DNA methylation, and larval basal activity. Exposure to raw and ozonated OSPW had no effect on breeding success, and global DNA methylation. Exposure altered the expression of vtg and nkx2.5 in the unexposed F1 generation. Exposure to both raw and ozonated OSPW had a transgenerational impact on larval activity levels, anxiety behaviors, and maximum swim speed compared to the control population. Prey capture success was unaffected, however, the variability in the behavioral responses to the introduction of prey was decreased. Fish developmentally exposed to either treatment were less active before exposure and did not have an anxiety response to the alarm cue hypoxanthine-3-n-oxide. Though ozonation was able to mitigate some of the effects of OSPW exposure, further studies are needed to understand the transgenerational effects and the implications of exposure on complex fish behaviors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.133611DOI Listing

Publication Analysis

Top Keywords

raw ozonated
16
oil sands
12
exposure
12
exposure raw
12
ozonated ospw
12
transgenerational effects
8
sands process-affected
8
process-affected water
8
ospw breeding
8
breeding success
8

Similar Publications

Elucidating molecular characteristics of organic compounds during ozone micro-bubbles treatment based on GC × GC-QTOF-MS and non-targeted analysis.

J Environ Manage

January 2025

College of Environment, Hohai University, Nanjing, 210098, PR China; Suzhou Research Institute, Hohai University, Suzhou, 215100, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China. Electronic address:

The ozone micro-bubbles (OCBs) technology is increasingly gaining traction as a promising alternative method for organic compounds removal in wastewater. Nevertheless, there is a scarcity of literature addressing the molecular-level transformation of organic compounds during OCBs treatment. In this work, the secondary effluent from a wastewater treatment plant was treated with ozone milli-bubbles (OLBs) and OCBs, and the fate of organic compounds at the molecular level was investigated using comprehensive two-dimensional gas chromatography quadrupole time-of-flight mass spectrometry (GC × GC-QTOF-MS).

View Article and Find Full Text PDF

This study investigated the applicability of a protein-like fluorescence sensor for wastewater quality monitoring. Several wastewater matrices, including raw, primary, secondary and tertiary effluents from three different wastewater treatment plants were used. Furthermore, the sensor was tested for the monitoring of quaternary effluent in a pilot scale plant installed downstream of a water reuse facility.

View Article and Find Full Text PDF

As the petrochemical industry grows, environmental and human health issues associated with petroleum refining and chemical processes also increase. Consequently, several studies have been conducted on this topic. However, the results of the current research vary, and a comprehensive review is lacking.

View Article and Find Full Text PDF

Decontamination of textile effluents the adsorption process on various raw clay minerals enhanced by ozonation: a modeling approach and optimization.

RSC Adv

November 2024

Faculty of Sciences of Bizerte, LR 05/ES09 Laboratory of Applications of Chemistry to Resources and Natural Substances and to the Environment (LACReSNE), Carthage University Zarzouna 7021 Tunisia

This study seeks to characterize three different clays and compare their capability to decontaminate a textile effluent using the adsorption process and to explore the synergistic effects of ozonation on the treatment. Response surface methodology, based on central composite design, was used to investigate the impact of three key parameters, namely, solution pH, clay dosage, and contact time, on the adsorption process. The three clays were sourced from distinct regions across Tunisia: Rommana, Tabarka, and Medenine.

View Article and Find Full Text PDF

Pet food is increasingly recognized as a significant vehicle for the transmission of foodborne pathogens to humans. The intimate association between pets and their owners, coupled with the rising trend of feeding pets raw and unprocessed foods, contributes substantially to this issue. Salmonella contamination in pet food can originate from raw materials and feed ingredients, the processing environment, and postprocessing handling and applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!