Tactile sensing requires form-fitting and dense sensor arrays over large-areas. Hybrid systems, combining Large-Area Electronics (LAE) and silicon-CMOS ICs to respectively provide diverse sensing and high-performance computation/control, enable a platform for such sensing. A key challenge is that hybrid systems require a large number of interfaces between the LAE and CMOS domains, particularly as the number of sensors scales. This paper presents an architecture that exploits the attribute of signal sparsity, commonly exhibited in large-scale tactile-sensing applications, to reduce the interfacing complexity to a level set by the sparsity rather than the number of sensors. This enhances scalability compared to sequential-scanning and active-matrix approaches. The architecture implements compressed sensing via thin-film-transistor (TFT) switches, and is demonstrated in a force-sensing system with 20 force sensors, a TFT die (with 161 ZnO TFTs) per sensor, and a custom CMOS IC for system readout and control. Acquisition error of 0.7 k[Formula: see text] is achieved over a 100 k Ω-20 k Ω sensing range, at energy and rate of 2.46  μ J/frame and 31 fps.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBCAS.2019.2948326DOI Listing

Publication Analysis

Top Keywords

force-sensing system
8
compressed sensing
8
tactile sensing
8
hybrid systems
8
number sensors
8
sensing
7
hybrid lae-cmos
4
lae-cmos force-sensing
4
system employing
4
employing tft-based
4

Similar Publications

Microsurgical learning is a difficult and stressful process, requiring self-control to achieve relaxation. The purpose of this study is to evaluate peripheral and central nervous system relaxation during microsurgical training. This cohort study included ten medical students with no previous experience in microsurgery.

View Article and Find Full Text PDF

Background: Asymmetric landing kinetics 6 months after anterior cruciate ligament reconstruction (ACLR) are associated with higher risk of second anterior cruciate ligament injury. Little is known about landing kinetics after ACLR with an all-soft tissue quadriceps tendon (QT) autograft despite its increasingly common use in young, active patients.

Purpose/hypothesis: The purpose of this study was to compare landing kinetics during a bilateral drop vertical jump (DVJ) 6 months after ACLR in participants who had undergone primary ACLR with a QT or bone-patellar tendon-bone (BTB) autograft.

View Article and Find Full Text PDF

Tactile interfaces are essential for enhancing human-machine interactions, yet achieving large-scale, precise distributed force sensing remains challenging due to signal coupling and inefficient data processing. Inspired by the spiral structure of and the processing principles of neuronal systems, this study presents a digital channel-enabled distributed force decoding strategy, resulting in a phygital tactile sensing system named PhyTac. This innovative system effectively prevents marker overlap and accurately identifies multipoint stimuli up to 368 regions from coupled signals.

View Article and Find Full Text PDF

A tailored substrate-based approach using focal pulsed field catheter ablation in patients with atrial fibrillation and advanced atrial substrate: Procedural data and 6-months success rates.

Heart Rhythm

January 2025

Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Background: Focal pulsed-field ablation (F-PFA) integrated in electroanatomical mapping (EAM) systems allows tailored lesion sets in patients with atrial fibrillation (AF).

Objective: To determine feasibility, safety and 6-months outcome of F-PFA for a tailored substrate-based catheter ablation (CA) approach in patients with AF and advanced atrial substrate.

Methods: Consecutive patients with AF and advanced atrial substrate treated by a F-PFA system (Cardiofocus) through contact-force sensing catheters integrated in EAM systems were prospectively enrolled.

View Article and Find Full Text PDF

Focal adhesions (FAs) are force-bearing multiprotein complexes, whose nanoscale organization and signaling are essential for cell growth and differentiation. However, the specific organization of FA components to exert spatiotemporal activation of FA proteins for force sensing and transduction remains unclear. In this study, we unveil the intricacies of FA protein nanoarchitecture and that its dynamics are coordinated by a molecular scaffold protein, BNIP-2, to initiate downstream signal transduction for cardiomyoblast differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!