AI Article Synopsis

  • The study explores the potential of using microbubble ultrasound contrast agent, SonoVue, as a less invasive method for estimating cardiac and aortic pressures, traditionally measured with invasive catheters.
  • Researchers investigated how the subharmonic response of SonoVue varies with hydrostatic pressures in a controlled environment using specific equipment.
  • Findings indicate that the subharmonic amplitude of SonoVue tends to increase with pressure up to 50 mmHg, but starts to decrease at higher pressures, suggesting that changes in the microbubble's physical properties influence this relationship.

Article Abstract

The measurement of cardiac and aortic pressures enables diagnostic insight into cardiac contractility and stiffness. However, these pressures are currently assessed invasively using pressure catheters. It may be possible to estimate these pressures less invasively by applying microbubble ultrasound contrast agents as pressure sensors. The aim of this study was to investigate the subharmonic response of the microbubble ultrasound contrast agent SonoVue (Bracco Spa, Milan, Italy) at physiological pressures using a static pressure phantom. A commercially available cell culture cassette with Luer connections was used as a static pressure chamber. SonoVue was added to the phantom, and radio frequency data were recorded on the ULtrasound Advanced Open Platform (ULA-OP). The mean subharmonic amplitude over a 40% bandwidth was extracted at 0-200-mmHg hydrostatic pressures, across 1.7-7.0-MHz transmit frequencies and 3.5%-100% maximum scanner acoustic output. The Rayleigh-Plesset equation for single-bubble oscillations and additional hysteresis experiments were used to provide insight into the mechanisms underlying the subharmonic pressure response of SonoVue. The subharmonic amplitude of SonoVue increased with hydrostatic pressure up to 50 mmHg across all transmit frequencies and decreased thereafter. A decreasing microbubble surface tension may drive the initial increase in the subharmonic amplitude of SonoVue with hydrostatic pressure, while shell buckling and microbubble destruction may contribute to the subsequent decrease above 125-mmHg pressure. In conclusion, a practical operating regime that may be applied to estimate cardiac and aortic blood pressures from the subharmonic signal of SonoVue has been identified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053253PMC
http://dx.doi.org/10.1109/TUFFC.2019.2948759DOI Listing

Publication Analysis

Top Keywords

hydrostatic pressure
12
subharmonic amplitude
12
pressure
9
cardiac aortic
8
microbubble ultrasound
8
ultrasound contrast
8
static pressure
8
transmit frequencies
8
amplitude sonovue
8
sonovue
7

Similar Publications

High-pressure continuous culturing: life at the extreme.

Appl Environ Microbiol

January 2025

Department of Earth, Environmental and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, USA.

Microorganisms adapted to high hydrostatic pressures at depth in the oceans and within the subsurface of Earth's crust represent a phylogenetically diverse community thriving under extreme pressure, temperature, and nutrient availability conditions. To better understand the microbial function, physiological responses, and metabolic strategies at conditions requires high-pressure (HP) continuous culturing techniques that, although commonly used in bioengineering and biotechnology applications, remain relatively rare in the study of the Earth's microbiomes. Here, we focus on recent developments in the design of HP chemostats, with particular emphasis on adaptations for delivery and sampling of dissolved gases.

View Article and Find Full Text PDF

Auxiliary metabolic genes encoded by bacteriophages can influence host metabolic function during infection. In temperate phages, auxiliary metabolic genes may increase host fitness when integrated as prophages into the host genome. However, little is known about the contribution of prophage-encoded auxiliary metabolic genes to host metabolic properties.

View Article and Find Full Text PDF

To simulate the effects of high pressure on molecular and electronic structure, methods based on the polarizable continuum model have emerged as a serious contender to the conventionally employed periodic boundary conditions. In this work, we present a highly efficient integral-direct algorithm for the Gaussians On Surface Tesserae Simulate HYdrostatic Pressure (GOSTSHYP) method. We examine the efficiency of this implementation on large chains of α-d-glucose units.

View Article and Find Full Text PDF

Based on the symmetric initiation mechanism of double-wing cracks in coal rock mass induced by high-pressure electro-recoil water pressure, fracturing experiments have been performed on coal rock mass under different water pressures and discharge conditions using high-voltage electric pulse hydraulic fracturing devices. Combined with CT scans, the crack spatial distribution inside the post-break coal rock mass was analyzed and found that the edge of the water injection hole is prone to produce double-wing cracks along the drilling hole diameter. ABAQUS is used to verify the physical test and extend the test conditions, the geometric parameter change, morphological expansion rule and crack initiation mechanism of double-wing crack in coal rock mass under different discharge conditions and ground stress conditions are studied.

View Article and Find Full Text PDF

Degenerated vision, altered lipid metabolism, and expanded chemoreceptor repertoires enable Lindaspio polybranchiata to thrive in deep-sea cold seeps.

BMC Biol

January 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

Background: Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!