Rheumatoid arthritis (RA) is a representative autoimmune disease characterized by chronic inflammation and joint destruction. Although biological inhibitors such as TNF-α and IL-6 antibodies have achieved success in clinical therapy, small molecule inhibitors against the Janus kinases (JAKs) involved in the signaling pathways of various cytokine receptors have gained more attraction as safe and efficacious options. In this study, we identified CS12192 as a novel selective JAK3/JAK1/TBK1 inhibitor and investigated its pharmacological effects on the experimental arthritis models in rat and mouse. We found that CS12192 showed a more selective inhibitory activity on JAK3, and to a less extent on JAK1 and TBK1, that were verified by decreased activation of p-STATs and p-IRF3 as well as down-regulation of IFN gene expression in the cultured cells with relevant stimuli. Furthermore, oral treatment with CS12192 dose-dependently ameliorated the disease severity, hind paw swelling, body weight loss, and bone destruction in rat models of adjuvant-induced arthritis (AIA) and collagen-induced arthritis (CIA). In a mouse CIA model, CS12192 also attenuated the disease severity, which was correlated with the suppressed CD4 T cell activation and Th17 function, as well as the reduced cytokine levels in sera and pro-inflammatory cytokine and chemokine gene expression in joint tissue. Corroboratively, RANKL-induced osteoclast formation was inhibited by CS12192. Thus, these results suggest that CS12192 as a novel selective JAK inhibitor has therapeutic potential for the treatment of RA and may provide a new strategy for the control of autoimmune diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2019.105914DOI Listing

Publication Analysis

Top Keywords

novel selective
12
selective jak3/jak1/tbk1
8
jak3/jak1/tbk1 inhibitor
8
rat mouse
8
rheumatoid arthritis
8
cs12192 novel
8
gene expression
8
disease severity
8
cs12192
7
arthritis
5

Similar Publications

Background/aims: Rare disease drug development faces unique challenges, such as genotypic and phenotypic heterogeneity within small patient populations and a lack of established outcome measures for conditions without previously successful drug development programs. These challenges complicate the process of selecting the appropriate trial endpoints and conducting clinical trials in rare diseases. In this descriptive study, we examined novel drug approvals for non-oncologic rare diseases by the U.

View Article and Find Full Text PDF

Caution when using network partners for target identification in drug discovery.

HGG Adv

January 2025

Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada; 5 Prime Sciences Inc, Montréal, Quebec, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Twin Research, King's College London, London, UK. Electronic address:

Identifying novel, high-yield drug targets is challenging and often results in a high failure rate. However, recent data indicates that leveraging human genetic evidence to identify and validate these targets significantly increases the likelihood of success in drug development. Two recent papers from Open Targets claimed that around half of FDA-approved drugs had targets with direct human genetic evidence.

View Article and Find Full Text PDF

Inovirus-Encoded Peptides Induce Specific Toxicity in .

Viruses

January 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

is a common opportunistic pathogen associated with nosocomial infections. The primary treatment for infections typically involves antibiotics, which can lead to the emergence of multidrug-resistant strains. Therefore, there is a pressing need for safe and effective alternative methods.

View Article and Find Full Text PDF

Retroviral genome selection and virion assembly remain promising targets for novel therapeutic intervention. Recent studies have demonstrated that the Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type-1 (HIV-1) undergo nuclear trafficking, colocalize with nascent genomic viral RNA (gRNA) at transcription sites, may interact with host transcription factors, and display biophysical properties characteristic of biomolecular condensates. In the present work, we utilized a controlled in vitro condensate assay and advanced imaging approaches to investigate the effects of interactions between RSV Gag condensates and viral and nonviral RNAs on condensate abundance and organization.

View Article and Find Full Text PDF

Co-Infection of Mosquitoes with Rift Valley Fever Phlebovirus Strains Results in Efficient Viral Reassortment.

Viruses

January 2025

Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA.

Rift Valley fever phlebovirus (RVFV) is a zoonotic mosquito-borne pathogen endemic to sub-Saharan Africa and the Arabian Peninsula which causes Rift Valley fever in ruminant livestock and humans. Co-infection with divergent viral strains can produce reassortment among the L, S, and M segments of the RVFV genome. Reassortment events can produce novel genotypes with altered virulence, transmission dynamics, and/or mosquito host range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!