The health concern of polychlorinated biphenyls (PCBs) in a notorious e-waste recycling site.

Ecotoxicol Environ Saf

School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China. Electronic address:

Published: December 2019

Polychlorinated biphenyls (PCBs) remain a relatively high level in e-waste recycling regions 3 decades after ban on use. Illegal recycling activities cunningly moved under the environmental law enforcement. Here, we analyzed PCBs in soils and plants from Guiyu, China (one of the world's largest recycling areas) to understand the relationship between PCBs pollution and the transition of recycling activities (locations and techniques). High concentrations of PCBs were found in soil and plant samples from emerging recycling sites, up to 234 ng g and 236 ng g (dry weight), respectively. The recycling activities, specifically the open burning process, would obviously aggravate the PCB pollution levels in its environment. The calculated values of estimated daily intake and hazard ratios of PCBs in dietary routes showed that health risks should be taken seriously.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.109817DOI Listing

Publication Analysis

Top Keywords

recycling activities
12
polychlorinated biphenyls
8
biphenyls pcbs
8
e-waste recycling
8
recycling
7
pcbs
6
health concern
4
concern polychlorinated
4
pcbs notorious
4
notorious e-waste
4

Similar Publications

The disposal of waste-printed circuit boards (WPCBs) poses significant environmental and health risks, as they are a major component of e-waste containing hazardous materials. However, WPCBs also contain valuable metallic elements, making them important resources for recycling. To address the dual challenge of hazardous waste management and resource recovery, sustainable approaches for metal extraction from WPCBs are imperative.

View Article and Find Full Text PDF

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

This systematic study delves into the synthesis and characterization of robust bi-functional aminopropyl-tagged periodic mesoporous organosilica with a high loading of small imidazolium bridges in its framework (PrNH@R-PMO-IL, ∼2 mmol g of IL). The materials proved to be a reliable and enduring support for the immobilization of Ru species, demonstrating strong performance and excellent selectivity in the -bromination of various derivatives of 2-phenylpyridine compounds and other heterocycles, showcasing its effectiveness and robust nature. The synthesized materials were thoroughly characterized to determine their structural properties, such as pore size distribution, loading of organic groups, and surface area, using various analytical techniques.

View Article and Find Full Text PDF

Biochemical and biophysical mechanisms macrophages use to tune phagocytic appetite.

J Cell Sci

January 2025

Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA.

Macrophages phagocytose, or eat, pathogens, dead cells and cancer cells. To activate phagocytosis, macrophages recognize 'eat me' signals like IgG and phosphatidylserine on the target cell surface. Macrophages must carefully adjust their phagocytic appetite to ignore non-specific or transient eat me signal exposure on healthy cells while still rapidly recognizing pathogens and debris.

View Article and Find Full Text PDF

The catalytic efficiency of sulfonated polystyrene foam waste (SPS) and sulfonated gamma alumina (SGA) in Friedel-Crafts type reactions was compared. All of the materials were studied using the state-of-the-art characterization techniques. SPS was found to carry a higher load of -SOH functional groups (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!