The use of time-lapse imaging (TLI) in the evaluation of morphokinetics associated with invitro developmental competence is well described for human, cattle and pig embryos. It is generally accepted that embryos that complete early cleavage sooner are more likely to form blastocysts and that timing of later events, such as blastocyst formation and expansion, are predictive of implantation potential and euploid status. In the horse, morphokinetics as a predictor of developmental competence has received little attention. In this study we evaluated the morphokinetics of early equine embryo development invitro for 144 oocytes after intracytoplasmic sperm injection and report the timings of blastocyst development associated with ongoing pregnancy for the first time. There was a tendency for time of cytoplasmic extrusion and first cleavage to occur earlier in the embryos that went on to form blastocysts (n=19) compared with those that arrested, and for first cleavage to occur earlier in blastocysts that established pregnancies that were ongoing (n=4) compared with pregnancies that were lost (n=2). TLI was clinically useful in identifying blastocysts when evaluation of morphology on static imaging was equivocal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/RD19225 | DOI Listing |
Fertil Steril
November 2024
Juno Genetics Italy, Reproductive Genetics, Rome, Italy; Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. Electronic address:
Theriogenology
January 2025
Departments of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA. Electronic address:
Intracytoplasmic sperm injection (ICSI) is the current clinical practice for the in vitro production of equine embryos. The use of conventional fertilization methods such as in vitro fertilization (IVF), has historically been associated with poor success in horses. However, recent improvements have led to better outcomes with IVF, though only when using fresh semen, which limits its use in clinical practice.
View Article and Find Full Text PDFHum Reprod
December 2024
IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy.
Study Question: Can more reliable time cut-offs of embryo developmental incompetence be generated by combining time-lapse technology (TLT), artificial intelligence, and preimplantation genetics screening for aneuploidy (PGT-A)?
Summary Answer: Embryo developmental incompetence can be better predicted by time cut-offs at multiple developmental stages and for different ranges of maternal age.
What Is Known Already: TLT is instrumental for the continual and undisturbed observation of embryo development. It has produced morphokinetic algorithms aimed at selecting embryos able to generate a viable pregnancy, however, such efforts have had limited success.
J Xenobiot
October 2024
Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel.
The association between embryo morphokinetics and its developmental competence is well documented. For instance, early cleaved embryos are more competent in developing to blastocysts, whereas the proportion of abnormally cleaved embryos that further developed to blastocysts is low. Numerous factors, such as the parental age, lifestyle, health, and smoking habits have been reported to affect the embryo morphokinetics and, consequently, its development.
View Article and Find Full Text PDFMol Hum Reprod
September 2024
Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
Spermatozoa have been shown to carry key RNAs which, according to animal evidence, seem to play a role in early embryo development. In this context, a potential key growth regulator is insulin-like growth factor 2 (IGF2), a highly conserved paternally expressed imprinted gene involved in cell growth and proliferation which, recent observations indicate, is expressed in human spermatozoa. We herein hypothesized that sperm IGF2 gene expression and transmission at fertilization is required to support early embryo development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!