In recent years, researchers have incorporated mussel-inspired metal-coordinate cross-links into various types of gels to improve their mechanical properties, particularly toughness and self-healing. However, not much is understood about how the linear mechanical properties of these gels dictate their tack properties. In this study, we use shear rheology and tack tests to explore correlations between linear viscoelastic properties (i.e., plateau modulus, , and characteristic relaxation time, τ) and tack behavior (i.e., peak stress, σ, and energy dissipation per volume, EDV) of transiently cross-linked hydrogels comprised of histidine-functionalized 4-arm PEG coordinated with Ni. By using the Ni-histidine ratio and polymer wt % of the transient networks to control their viscoelastic properties, we demonstrate a strong dependence of σ on and τ. The observed correlation between network dynamics and mechanics under tensile load is in good quantitative agreement with a theoretical framework for σ, which includes the linear viscoelastic properties as parameters. EDV is also influenced by and τ, and the EDV after reaching σ is additionally dependent on the polymer wt %. These findings are consistent with previously proposed molecular mechanics of reversible HisNi cross-links and provide us with new insights into the correlations between bulk mechanics and adhesive dynamics of gels with transient metal-coordinate cross-links.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b02772 | DOI Listing |
Pharm Res
January 2025
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
Purpose: The purpose of this research was to develop and characterize dual-drug Isoniazid-Pyridoxine gummies using Semisolid Extrusion (SSE) 3D printing technology, aimed at personalized dosing for a broad patient demographic, from pediatric to geriatric. This study leverages SSE 3D printing, an innovative approach in personalized medicine, to enable precise dose customization and improve patient adherence. By formulating dual drug-loaded gummies, the research addresses the challenges of pill burden and poor palatability associated with traditional tuberculosis regimens, ultimately enhancing the therapeutic experience and effectiveness for patients across various age groups.
View Article and Find Full Text PDFClin Biomech (Bristol)
January 2025
Department of Mechanical Engineering, University of Michigan, 2350 Hayward St, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan, 200 Bonisteel Blvd, Ann Arbor, MI 48109, United States. Electronic address:
Background: The lower birth canal is the final constriction through which a fetal head must pass for delivery. Unfortunately, injuries to the lower birth canal tissues occur in up to 19 % of first-time vaginal deliveries due to the 300 % stretch required.
Methods: This is a secondary analysis of data from 56 healthy nullipara recorded by a lower birth canal dilator during the first stage of labor.
Soft Matter
January 2025
Research Center for Macromolecules & Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan.
We developed a facile one-pot method for fabricating physical gels consisting of ultrahigh molecular weight (UHMW) polymers and highly concentrated lithium salt electrolytes. We previously reported physical gels formed from the entanglement of UHMW polymers by radical polymerisation in aprotic ionic liquids. In this study, we found that the molecular weight of methacrylate polymers formed by radical polymerisation increased with the concentration of lithium salts in the organic solvents.
View Article and Find Full Text PDFScience
January 2025
Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
Commercial adhesives are petroleum-based thermoset networks or nonbiodegradable thermoplastic hot melts, making them ideal targets for replacement by biodegradable alternatives. Poly(3-hydroxybutyrate) (P3HB) is a biorenewable and biodegradable alternative to conventional plastics, but microbial P3HB, which has a stereoperfect stereomicrostructure, exhibits no adhesion. In this study, by elucidating the fundamental relationship between chemocatalytically engineered P3HB stereomicrostructures and adhesion properties, we found that biodegradable syndio-rich P3HB exhibits high adhesion strength and outperforms common commercial adhesives, whereas syndiotactic, isotactic, or iso-rich P3HB shows no measurable adhesion.
View Article and Find Full Text PDFUltrasound Med Biol
January 2025
Institute of Biomedical Technologies, Auckland University of Technology, Auckland City, 1010, Auckland, New Zealand. Electronic address:
Objective: This study aims to evaluate the viability of a hypothesis for selective targeting of skin cancer cells by exploiting the spectral gap with healthy cells using analytical and numerical simulation.
Methods: The spectral gap was first identified using a viscoelastic dynamic model, with the physical and mechanical properties of healthy and cancerous skin cells deduced from previous experimental studies conducted on cell lines. The outcome of the analytical simulation was verified numerically using modal and harmonic analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!