Centrosymmetric materials with spin-degenerate bands are generally considered to be trivial for spintronics and related physics. In two-dimensional (2D) materials with multiple degenerate orbitals, we find that the spin-orbit coupling can induce spin-orbital locking, generate out-of-plane Zeeman-like fields displaying opposite signs for opposing orbitals, and create novel electronic states insensitive to the in-plane magnetic field, which thus enables a new type of Ising superconductivity applicable to centrosymmetric materials. Many candidate materials are identified by high-throughput first-principles calculations. Our work enriches the physics and materials of Ising superconductivity, opening new opportunities for future research of 2D materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.123.126402 | DOI Listing |
Nat Commun
December 2024
Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA.
Geometric frustration in two-dimensional Ising models allows for a wealth of exotic universal behavior, both Ising and non-Ising, in the presence of quantum fluctuations. In particular, the triangular antiferromagnet and Villain model in a transverse field can be understood through distinct XY pseudospins, but have qualitatively similar phase diagrams including a quantum phase transition in the (2+1)-dimensional XY universality class. While the quantum dynamics of modestly-sized systems can be simulated classically using tensor-based methods, these methods become infeasible for larger lattices.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
Adv Mater
December 2024
School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China.
ACS Nano
December 2024
Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
Interaction between electrons and phonons in solids is a key effect defining the physical properties of materials, such as electrical and thermal conductivity. In transition metal dichalcogenides (TMDCs), the electron-phonon coupling results in the formation of polarons, quasiparticles that manifest themselves as discrete features in the electronic spectral function. In this study, we report the formation of polarons at the alkali-dosed MoSe surface, where Rashba-like spin splitting of the conduction band states is caused by an inversion-symmetry breaking electric field.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
Properties of layered superconductors can vary drastically when thinned down from bulk to monolayer owing to the reduced dimensionality and weakened interlayer coupling. In transition metal dichalcogenides (TMDs), the inherent symmetry breaking effect in atomically thin crystals prompts novel states of matter such as Ising superconductivity with an extraordinary in-plane upper critical field. Here, we demonstrate that two-dimensional (2D) superconductivity resembling those in atomic layers but with more fascinating behaviors can be realized in the bulk crystals of two new TMD-based superconductors BaClTaS and BaClTaSe with superconducting transition temperatures 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!