Hydration-Facilitated Fine-Tuning of the AIE Amphiphile Color and Application as Erasable Materials with Hot/Cold Dual Writing Modes.

Angew Chem Int Ed Engl

Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.

Published: June 2020

Hydration water greatly impacts the color of inorganic crystals, but it is still unknown whether hydration water can be utilized to systematically manipulate the emission color of organic luminescent groups. Now, metal ions with different hydration ability allow fine-tuning the emission color of a fluorescent group displaying aggregation induced emission (AIE). Because the hydration water can be removed easily by gentle heating or mechanical grinding and re-gained by solvent fuming, rewritable materials can be fabricated both in the hot-writing and cold-writing modes. This hydration-facilitated strategy will open up a new vista in fine-tuning the emission color of AIE molecules based on one synthesis and in the design of smart luminescent devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201911845DOI Listing

Publication Analysis

Top Keywords

hydration water
12
emission color
12
fine-tuning emission
8
color
5
hydration-facilitated fine-tuning
4
fine-tuning aie
4
aie amphiphile
4
amphiphile color
4
color application
4
application erasable
4

Similar Publications

Optimized preparation of alginate/nanocellulose/polypyrrole composite hydrogel via in-situ polymerization for high-efficiency solar desalination and wastewater purification.

Chemosphere

January 2025

School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea; Advanced Technology Research Centre, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea; Future Convergence Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea. Electronic address:

In the field of solar steam generation, hydrogels with interfacial evaporation configurations stand as a promising candidate for solar evaporators. Hydrogel-based photothermal materials provide excellent hydration channels for supplying water to an evaporative layer due to their porous structure and hydrophilic nature. This work proposed a facile and in-situ fabrication of sodium alginate hydrogel incorporated with cellulose nanocrystals and polypyrrole as an effective photothermal material.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluates the fracture strength of 1 mm-thick CAD/CAM occlusal veneers made from lithium disilicate (LD) and resin nanoceramics (RNC) to assess their viability in dental restoration.
  • Using a novel testing protocol, the RNC group demonstrated a significantly higher load-bearing capacity compared to the LD group, indicating better durability under stress.
  • Both materials experienced similar crack patterns during testing, emphasizing the importance of understanding mechanical properties for ensuring the longevity of dental restorations.
View Article and Find Full Text PDF
Article Synopsis
  • The study uses molecular dynamics simulations to analyze how different termination functional groups on TiCT MXene membranes affect the behavior of nearby water molecules and foulants.
  • Results indicate that a denser water layer forms near hydroxyl (OH) terminated membranes compared to fluorine (F) or oxygen (O) terminations, influencing the binding of alginate monomers.
  • Steered molecular dynamics simulations reveal that M alginate monomers bind more strongly to O terminated surfaces, while binding is weak near OH terminations due to hydration water, with calcium ions enhancing fouling via contact and solvent-shared ionic pairs.
View Article and Find Full Text PDF

Obesity, a chronic disease marked by excessive fat accumulation and a body mass index (BMI) of 30 kg/m² or more, has become a major global health issue, affecting many adults worldwide and particularly prevalent in developed nations and Saudi Arabia. The condition can be caused by genetic, metabolic, and lifestyle factors. Understanding its awareness is imperative in designing effective health interventions.

View Article and Find Full Text PDF

The hydration shell of a protein is so important and an integral part of it, that protein's structure, stability and functionality cannot be conceived in its absence. This layer has unique properties not found in bulk water. However, ions, always present in the protein environment, disturb the hydration shell depending on their nature and concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!