Microplates are commonly used in the modern laboratory environment for a wide variety of tasks both in small-scale laboratory benchtop operations as well as large-scale high-throughput screening (HTS) campaigns. Though laboratory automation has greatly increased the utility of microplates there remain instances where automation-based instrumentation is not feasible, cost-effective or compatible with microplate formatting needs. In these cases, microplates must be manually prepared. Problematic to manual microplate manipulations is that a number of difficulties can arise pertaining to the accurate tracking of sample operations, data record keeping and quality control (QC) inspection for well artifacts or formatting errors. As microplate well densities increase (i.e., 96-well, 384-well, 1536-well) the potential for introducing errors also drastically increases.  Moreover, for small bench-top laboratory operations there exists a need to improve the ease and accuracy of sample handling in a cost-effective fashion. Herein, we describe a system that acts as a semi-automated pipetting guide referred to as the Microplate Assistive Pipetting Light Emitter (M.A.P.L.E.).  M.A.P.L.E. has multiple uses for supporting compound hit-picking and microplate preparation for assay development in high-throughput screening or laboratory benchtop operations, as well as QC/quality assurance (QA) diagnostic evaluation of microplate quality or visualizing well formatting errors.

Download full-text PDF

Source
http://dx.doi.org/10.3791/60088DOI Listing

Publication Analysis

Top Keywords

laboratory benchtop
8
benchtop operations
8
operations well
8
high-throughput screening
8
formatting errors
8
microplate
6
laboratory
5
well
5
applications open
4
open source
4

Similar Publications

Evaluation of charge summing correction in CdTe-based photon-counting detectors for breast CT: performance metrics and image quality.

J Med Imaging (Bellingham)

January 2025

U.S. Food and Drug Administration, Office of Science and Engineering Labs, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, Maryland, United States.

Purpose: We evaluate the impact of charge summing correction on a cadmium telluride (CdTe)-based photon-counting detector in breast computed tomography (CT).

Approach: We employ a custom-built laboratory benchtop system using the X-THOR FX30 0.75-mm CdTe detector (Varex Imaging, Salt Lake City, Utah, United States) with a pixel pitch of 0.

View Article and Find Full Text PDF

Machine learning driven benchtop Vis/NIR spectroscopy for online detection of hybrid citrus quality.

Food Res Int

February 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China. Electronic address:

The aim of this study was to explore application of visible and near-infrared (Vis/NIR) spectroscopy combined with machine learning models for SSC and TA prediction of hybrid citrus. The Vis/NIR spectra of samples including navel-region, equator-region and multi-region combination spectra in navel-region and equator-region were collected using a benchtop equipment. The performance of SSC and TA prediction models with different region spectra, including partial least squares (PLS), random forest (RF), k-nearest neighbors (KNN), support vector machine (SVM) and multilayer feedforward neural network (MFNN), was assessed.

View Article and Find Full Text PDF

Recent years, intensified fed-batch culture with ultra-high seeding density (uHSD-IFB) is coming to the forefront of manufacturers' choice for its enhanced productivity. However, the effects of seed cell physiological state and aeration strategies on these processes remain underexplored due to the ultra-high seeding density. Currently, the pre-production seeding inoculum (N-1) crucial for the uHSD-IFB cultures relies heavily upon case-by-case empirical experiences.

View Article and Find Full Text PDF

DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells.

View Article and Find Full Text PDF

Introduction: Repairing damaged cartilage poses significant challenges, particularly in cases of congenital cartilage defects such as microtia or congenital tracheal stenosis, or as a consequence of traumatic injury, as the regenerative potential of cartilage is inherently limited. Stem cell therapy and tissue engineering offer promising approaches to overcome these limitations in cartilage healing. However, the challenge lies in the size of cartilage-containing organs, which necessitates a large quantity of cells to fill the damaged areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!