Laboratory studies investigating subsurface microbial processes, such as metal leaching in deep ore deposits (biomining), share common and challenging obstacles, including the special environmental conditions that need to be replicated, e.g., high pressure and in some cases acidic solutions. The former requires an experimental setup suitable for pressurization up to 100 bar, while the latter demands a fluid container with high chemical resistance against corrosion and unwanted chemical reactions with the container wall. To meet these conditions for an application in the field of in situ biomining, a special flexible gold-titanium reaction cell inside a rocking high-pressure reactor was used in this study. The described system allowed simulation of in situ biomining through sulfur-driven microbial iron reduction in an anoxic, pressure-controlled, highly chemically inert experimental environment. The flexible gold-titanium reaction cell can accommodate up to 100 mL of sample solution, which can be sampled at any given time point while the system maintains the desired pressure. Experiments can be performed on timescales ranging from hours to months. Assembling the high-pressure reactor system is fairly time consuming. Nevertheless, when complex and challenging (microbiological) processes occurring in the earth's deep subsurface in chemically aggressive fluids have to be investigated in the laboratory, the advantages of this system outweigh the disadvantages. The results found that even at high pressure the microbial consortium is active, but at significantly lower metabolic rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/60140 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!