A recurring theme in molecular electronics is the relationship between the intramolecular electron transfer rate in a donor-bridge-acceptor system and the conductance at low bias in the corresponding electrode-bridge-electrode junction. The similarities between through-bridge donor-to-acceptor electron tunneling and through-bridge electrode-to-electrode Landauer transport led to the suggestion of an approximate linear relationship between the rate and the conductance for any given bridge. A large body of work indicates that the two quantities are not necessarily linearly related, showing different behaviors as a function of temperature, voltage and bridge length. Apart from Landauer tunneling, incoherent hopping can be an important mechanism in molecular junctions. We propose a donor-bridge-acceptor molecular junction, functioning in the incoherent hopping regime, that is suited for establishing direct correlations between the electrode-to-electrode current and the intramolecular donor-to-acceptor electron transfer rate. We suggest that this type of junction may be used to observe the Marcus-inverted-parabola dependence of the intramolecular rate on energy gap by varying the bias voltage. The realization of such an experiment would enable meaningful comparisons between solution-phase electron transfer rates and molecular-junction currents for the same molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.9b07371 | DOI Listing |
Mikrochim Acta
January 2025
College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China.
Myoglobin (Mb), an important cardiac marker, plays a crucial role in diagnosing, monitoring, and evaluating the condition of patients with cardiovascular diseases. Here, we propose a label-free photoelectrochemical (PEC) sensor for the detection of Mb through target regulated the photoactivity of AgS/FeOOH heterojunction. The AgS/FeOOH nanospindles were synthesized and served as a sensing platform for the fabrication of bio-recognized process for Mb.
View Article and Find Full Text PDFInorg Chem
January 2025
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
The low sulfur selectivity of Fe-based HS-selective catalytic oxidation catalysts is still a problem, especially at a high O content. This is alleviated here through anchoring FeO nanoclusters on UiO-66 via the formation of Fe-O-Zr bonds. The introduced FeO species exist in the form of Fe and Fe.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Applied Science and Humanities, Haldia Institute of Technology, ICARE Complex, Haldia 721657, India.
This study explores the reactivity of a new intermolecular P/B frustrated Lewis pair in the context of dinitrogen activation through a push-pull mechanism. The ab initio molecular dynamics model known as atom-centered density matrix propagation plays a pivotal role in elucidating the weakly associated encounter complex. In-depth analysis, mainly through intrinsic reaction coordinate calculations, supports a single-step mechanism.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China.
Leaf photosynthesis and respiration are two of the largest carbon fluxes between the atmosphere and biosphere. Although experiments examining the warming effects on photosynthetic and respiratory thermal acclimation have been widely conducted, the sensitivity of various ecosystem and vegetation types to warming remains uncertain. Here we conducted a meta-analysis on experimental observations of thermal acclimation worldwide.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
Background: Phaseolus vulgaris is a warm-season crop sensitive to low temperatures, which can adversely affect its growth, yield, and market value. Exogenous growth regulators, such as diethyl aminoethyl hexanoate (DA-6), have shown potential in alleviating stress caused by adverse environmental conditions. However, the effects that DA-6 has on P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!