AI Article Synopsis

Article Abstract

Molybdenum disulfide (MoS) is a potential earth-abundant electrocatalyst for the hydrogen evolution reaction (HER), but the lack of in-depth understanding of its intrinsic activity still impedes the further optimization and design of MoS-based electrocatalysts. Herein, we report a facile in situ hydrothermal synthetic method to prepare vertical MoS arrays grown on guar gum-derived carbon aerogels (GCA), termed MoS@GCA. The obtained well-assembled MoS@GCA architectures consist of uniform, few-layered and S-edge-rich MoS nanoflakes with a length of approximately 100 nm, which effectively prevent the inherent stacking among MoS layers and connect the charge transfer path between interlayers, thus endowing MoS@GCA with a huge number of active sites and high conductivity. Benefitting from all these advantages, the optimal MoS@GCA exhibited extraordinary HER/OER performances, including a low onset potential for both the HER (24.28 mV) and OER (1.53 V), and a low overpotential at 10 mA cm for the HER (54.13 mV) and OER (370 mV), which are both extremely close to that of the noble Pt/C. Furthermore, a series of operando Raman spectroscopy measurements on MoS@GCA were conducted to identify the intrinsic HER/OER-active sites during the HER and OER process. The results show that the S-H bond is generated simultaneously as HER/OER excitation, indicating the rich S-edge may be the intrinsic active site, which will accelerate the HER/OER kinetic process. Density functional theory (DFT) calculations revealed that the observed superb HER/OER activity can be attributed to the synergistic effect of rich S-edge of MoS and confinement effect of GCA, which collaboratively promote the proton adsorption and electrocatalytic kinetics. Reasonably, this study will have profound guiding value for the rational tailoring of the microstructure and size of transition metal electrocatalysts via hierarchical porous carbon aerogels.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr07277bDOI Listing

Publication Analysis

Top Keywords

carbon aerogels
12
s-edge-rich mos
8
mos arrays
8
rich s-edge
8
her/oer
5
mos
5
mos@gca
5
arrays vertically
4
vertically grown
4
grown carbon
4

Similar Publications

Ceramic aerogels are promising high-temperature thermal insulation materials due to their outstanding thermal stability and oxidation resistance. However, restricted by nanoparticle-assembled network structures, conventional ceramic aerogels commonly suffer from inherent brittleness, volume shrinkage, and structural collapse at high temperatures. Here, to overcome such obstacles, 3D ultralight and highly porous carbon tube foams (CTFs) were designed and synthesized as the carbonaceous precursors, where melamine foams were used as the sacrificial templates to form the hollow and thin-wall network structures in the CTFs (density: ∼4.

View Article and Find Full Text PDF

Nitrogen-Doped Porous Nanofiber Aerogel-Encapsulated Staphylo-NiS Accelerating Polysulfide Conversion for Efficient Li-S Batteries.

ACS Appl Mater Interfaces

January 2025

College of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xian 710021, China.

The low conductivity of sulfur substances and the fussy effect of lithium polysulfides (LPS) limit the practical application of lithium-sulfur batteries (LSBs). In this work, NiS is in situ synthesized on N-doped 3D carbon nanofibers with an optimized pore structure as a cathode material for LSBs. The conductive carbon nanofiber skeleton with a hierarchical (micropore-mesopore-macropore) structure etched by Cd can reduce the interface resistance of the cathode and remiss volume expansion during charge-discharge progress.

View Article and Find Full Text PDF

Adsorption and immobilization of phosphorus in eutrophic lake water and sediments by a novel red soil based porous aerogel.

Water Res

December 2024

Key Laboratory of Poyang Lake Environment and Resource Utilization, Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China. Electronic address:

To effectively mitigate global eutrophication in lakes, regulating sedimentary phosphorus release remains a primary strategy. Enhancing the adsorption and stabilization performance of passivating agents is integral to addressing endogenous phosphorus pollution in aquatic systems. This study presents a novel aerogel with a high specific surface area (663.

View Article and Find Full Text PDF

Fabrication of a novel reusable nanozyme by immobilizing Co-doped carbon dots on nanocellulose aerogels for efficient dyes degradation.

Int J Biol Macromol

January 2025

Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:

Carbon dot-based nanozymes have gained significant attention, but their application in dye degradation remains limited due to low activity and challenges in recovery and reuse. To overcome these limitations, high peroxidase-active Co-doped carbon dots (CoCDs) with surface amines were synthesized via hydrothermal method and immobilized onto TEMPO-oxidized cellulose nanofibrils (TOCNF) aerogels using EDC/NHS coupling. For the first time, this study investigates the dye degradation efficiency of CDs nanozyme.

View Article and Find Full Text PDF

Bioinspired Photo-Thermal Catalytic System using Covalent Organic Framework-based Aerogel for Synchronous Seawater Desalination and H2O2 Production.

Angew Chem Int Ed Engl

January 2025

Nankai University, School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, CHINA.

Efficient utilization of solar energy is widely regarded as a crucial solution to addressing the energy crisis and reducing reliance on fossil fuels. Coupling photothermal and photochemical conversion can effectively improve solar energy utilization yet remains challenging. Here, inspired by the photosynthesis system in green plants, we report herein an artificial solar energy converter (ASEC) composed of light-harvesting units as solar collector and oriented ionic hydrophilic channels as reactors and transporters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!