The sodium-water transport system is crucial for alveolar fluid clearance. The pulmonary edema caused by extracorporeal circulation is mainly due to increased alveolar capillary permeability and reduced fluid clearance. We previously demonstrated that pre-B-cell colony enhancing factor (PBEF) increases alveolar capillary permeability and inhibits the sodium-water transport system. However, the specific mechanism by which PBEF inhibits the sodium-water transport system is unclear. In this study, we used HPAEpiC (alveolar type II epithelial cells) to construct an anoxia-reoxygenation model and simulate the extracorporeal circulation microenvironment. The impact of PBEF on the expression of genes and proteins implicated in sodium transport and its effect on the activation status of the ERK, P38, and AKT signaling pathways were explored in HPAEpiC by real-time fluorescent PCR and western blotting. Specific inhibitors were employed to verify the role of the three signaling pathways in the regulation of the sodium-water transport system. PBEF was substantially non-toxic to alveolar epithelial cells, inhibited the expression of ENaC, NKA, and AQP1, and affected the ERK, P38, and AKT signaling pathways. ERK pathway inhibitors attenuated PBEF-induced downregulation of EnaC, NKA, and AQP1, and increased NKA activity. P38 pathway inhibitors only attenuated PBEF-induced suppression of NKA expression. AKT pathway inhibitors potentiated the inhibitory effects of PBEF, reducing EnaC, AQP1, and NKA expression, as well as NKA activity. In conclusion, PBEF inhibited the sodium-water transport system by activation of ERK and suppression of AKT signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789215PMC

Publication Analysis

Top Keywords

sodium-water transport
24
transport system
24
akt signaling
12
signaling pathways
12
pathway inhibitors
12
pre-b-cell colony
8
colony enhancing
8
enhancing factor
8
alveolar epithelial
8
fluid clearance
8

Similar Publications

Background: This study investigates the protective effects and potential mechanisms of 1,25-(OH)D against high-altitude pulmonary edema (HAPE).

Methods: Hypoxia-induced rats were administered 1,25-(OH)D for 24, 48, and 72 hours, and we observed lung tissue injury and pulmonary edema. Immunohistochemistry (IHC) and Western blot analyses were employed to analyze the expression of markers associated with ferroptosis and ferritinophagy in rat lungs.

View Article and Find Full Text PDF

Excessive sodium intake is associated with nephrolithiasis, but the impact of sodium-deficient (SD) diets is unknown. Hence, we investigated the effects of short- and long-term SD diets on the expression of renal aquaporins and sodium transporters, and thus calcium oxalate (CaOx) crystal formation in hyperoxaluria rats. In a short-term sodium balance study, six male rats received drinking water and six received 0.

View Article and Find Full Text PDF
Article Synopsis
  • - SGLT2 inhibitors work by blocking glucose and sodium reabsorption in the kidneys, leading to complex responses in renal function that vary significantly between patients and studies.
  • - Despite some initial effects, these medications do not lead to significant long-term increases in urine output or sodium excretion due to rapid kidney adaptation.
  • - While these drugs maintain their influence on glucose excretion over time, it remains unclear if they truly alter volume regulation in patients, which may affect their role in preventing serious heart failure events.
View Article and Find Full Text PDF

Sodium/water transport through Na-K-Cl cotransporter-1 (NKCC1) and sodium/hydrogen exchanger-1 (NHE1) in both astrocytes and endothelial cells is critical to cytotoxic and ionic edema following spinal cord injury (SCI). High-mobility group box-1 (HMGB1) promotes spinal cord edema after SCI. Accordingly, we sought to identify both the role of HMGB1 and the mechanism of its effect on NKCC1 and NHE1 expression in astrocytes and endothelial cells as well as the role of the regulation of spinal cord edema after SCI.

View Article and Find Full Text PDF

Endothelins and renal dopamine contribute to control of renal function and arterial pressure in health and various forms of experimental hypertension, the action is mediated by tonic activity of specific receptors. We determined the action mediated by endothelin type B and by dopamine D3 receptors (ETB-R, D3-R) in anaesthetized spontaneously hypertensive (SHR) and in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. In rats of both hypertension models infused during 60 min into the interstitium of in situ kidney were either ETB-R antagonist, BQ788 (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!