The gut microbiota has been shown to play an important role in chronic liver disease. It has been found that both and its culture supernatant have the potential to mitigate alcoholic steatohepatitis. However, the exact mechanism is still not fully understood. Bone marrow mesenchymal stem cells have immunosuppressive effects with few side effects. The synergistic effect between culture supernatant and bone marrow mesenchymal stem cells (BMMSCs) deserves further observation. In this study, a mouse model of chronic alcoholic hepatitis was established by eight weeks of Lieber-DeCarli liquid diet feeding; and LGG-s, BMMSCs or a combination of the two were used to explore a new therapeutic method for alcoholic liver disease and to study the mechanism. The results showed that the combined LGG-s and BMMSC treatment might have a synergistic effect and could improve the symptoms of alcoholic hepatitis by regulating inflammation, autophagy and lymphocyte subsets through the PI3k/NF-kB and PI3K/mTOR pathways. With the treatment, the autophagy rate accelerated, and alcohol-induced natural killer B (NKB) cell and follicular helper T (TFH) cell numbers decreased. These findings suggest that the development of alcoholic hepatitis may occur via PI3K/NF-kB and PI3K/mTOR pathway overactivation as well as through NKB and TFH cell imbalances. Moreover, LGG-s and BMMSCs can regulate these factors and alleviate the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789285 | PMC |
Neoplasma
December 2024
Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei, China.
Many lines of evidence suggest that circular RNAs (circRNAs) are closely associated with the occurrence and progression of colon cancer. The objective of this study was to investigate the regulatory effects and mechanisms of circ_0075829 on ferroptosis and immune escape in colon cancer. We utilized colon cancer cell lines and a xenograft mouse model to analyze the function of circ_0075829 in vitro and in vivo.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Breath Research, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
Cytochrome P450 (CYP) 3A4 plays a major role in drug metabolism. Its activity could be determined by non-invasive and cost-effective assays, such as breath analysis, for the personalised monitoring of drug response. For the first time, we identify an isotopically unlabelled CYP3A4 substrate, tolterodine that leads to the formation of a non-toxic volatile metabolite, acetone, which could potentially be applied to monitor CYP3A4 activity in humans.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Department of Molecular and Genomic Biomedicine, Nagasaki University Graduate School of Biomedical Sciences, 852-8523, Nagasaki, Japan; Central Radioisotope Division, National Cancer Center Research Institute, 104-0045, Tokyo, Japan; Division of BNCT, EPOC, National Cancer Center, Tokyo, Japan; Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, 104-0045, Tokyo, Japan. Electronic address:
Boron neutron capture therapy (BNCT) is based on nuclear reactions between thermal neutron and boron-10 preferentially distributed in the cancer cells. B-boronophenylalanine (BPA) is the approved drug for treatment of oral cancers for BNCT. However, the predictive biomarkers to evaluate therapeutic efficacy and side-effects have not been clarified yet.
View Article and Find Full Text PDFTalanta
January 2025
Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China. Electronic address:
The rise of extracellular matrix (ECM)-supported three-dimensional (3D) cell culture systems which bridge the gap between in vitro culture and in vivo living tissue for pharmacological models has increased the need for simple and robust cell viability assays. This study presents the development of an effective biosensing assay for in situ monitoring of the catecholamine neurotransmitter exocytosis levels for cell viability assessment within complicated cell-encapsulated hydrogel milieu. Firstly, the biosensing assay demonstrated the distinction among four pheochromocytoma (PC12) cell lines with varying degrees of differentiation and the discrepancy in cellular neurosecretory capacity between two-dimensional (2D) monolayer and 3D agarose hydrogel culture conditions, accompanied by morphological distinctions.
View Article and Find Full Text PDFRespir Res
January 2025
Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico.
Background: Post-COVID-19 respiratory sequelae often involve lung damage, which is called residual lung abnormalities, and potentially lead to chronic respiratory issues. The adaptive immune response, involving T-cells and B-cells, plays a critical role in pathogen control, inflammation, and tissue repair. However, the link between immune dysregulation and the development of residual lung abnormalities remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!