Preliminary evidence indicated that children with a reading disorder (RD) may have deviance in their ability to perform high demanding cognitive tasks, such as reading, depending on somatosensory inputs. Until now, only anecdotical reports suggested that improving somatosensory inputs may influence their ability to maintain a stable perception of the visual world despite continuous movements of our eyes, head, and body. Here, we investigated whether changes in upright perception, the subjective visual vertical (SVV), were modulated by somatosensory inputs in a group of children with RD. The SVV task was used under two distinct conditions, i.e., with or without somatosensory inputs from the foot. We enrolled a group of 20 children with reading disorders and 20 sex-, age-, IQ- matched children with neurotypical development. Responses to the SVV task were found to be significantly less accurate in children with RD than in children with neurotypical development ( < 0.001). In the latter, SVV response did not depend on somatosensory inputs from the foot. In contrast, in children with RD somatosensory inputs, either improved or worsen their SVV depending on the tilt direction ( < 0.01). Our results suggested that SVV responses in children with RD could be related to an immaturity for heteromodal sensory integration, including somatosensory inputs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779773PMC
http://dx.doi.org/10.3389/fneur.2019.01044DOI Listing

Publication Analysis

Top Keywords

somatosensory inputs
28
children reading
12
children
9
subjective visual
8
visual vertical
8
reading disorders
8
group children
8
svv task
8
inputs foot
8
children neurotypical
8

Similar Publications

Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.

Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).

View Article and Find Full Text PDF

Maternally activated connections of the ventral lateral septum reveal input from the posterior intralaminar thalamus.

Brain Struct Funct

January 2025

Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary.

The lateral septum (LS) demonstrates activation in response to pup exposure in mothers, and its lesions eliminate maternal behaviors suggesting it is part of the maternal brain circuitry. This study shows that the density of pup-activated neurons in the ventral subdivision of the LS (LSv) is nearly equivalent to that in the medial preoptic area (MPOA), the major regulatory site of maternal behavior in rat dams. However, when somatosensory inputs including suckling were not allowed, pup-activation was markedly reduced in the LSv.

View Article and Find Full Text PDF

Postural Responses in Trauma-Experienced Individuals.

Biomedicines

December 2024

Department of Health and Nursing Sciences, Faculty of Health and Sport Sciences, Széchenyi István University, Egyetem tér 1, 9026 Győr, Hungary.

Balance and proprioception are essential elements in postural control and injury prevention. Proprioception, the body's sense of position and movement, is closely tied to balance, which depends on input from the visual, vestibular, and somatosensory systems. This article explores the link between trauma experiences and proprioceptive dysfunction, emphasizing how heightened muscle tone, dissociation, and altered sensory processing contribute to balance issues and the risk of injury.

View Article and Find Full Text PDF

Brain-resident macrophages, microglia, have been proposed to have an active role in synaptic refinement and maturation, influencing plasticity and circuit-level connectivity. Here we show that several neurodevelopmental processes previously attributed to microglia can proceed without them. Using a genetically modified mouse that lacks microglia (Csf1r), we find that intrinsic properties, synapse number and synaptic maturation are largely normal in the hippocampal CA1 region and somatosensory cortex at stages where microglia have been implicated.

View Article and Find Full Text PDF

Differential neurogenic patterns underlie the formation of primary and secondary areas in the developing somatosensory cortex.

Cereb Cortex

January 2025

Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan.

Article Synopsis
  • The cerebral cortex has organized areas that are connected by axons, but how neurogenesis (the development of new neurons) is coordinated between these areas isn’t well understood.
  • The somatosensory cortex is important for processing touch and receives sensory information through the thalamus to its primary and secondary areas.
  • Our study found that neuron production in the secondary somatosensory cortex (S2) happens before the primary somatosensory cortex (S1) and ends sooner, with a decrease in upper-layer neurons in S2 due to a change at the surface layer, suggesting a specific mechanism that organizes the development of these cortical areas.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!