Olive leaf spot (OLS), caused by , is one of the most common and serious diseases of olive trees in the Mediterranean region. Understanding the pathogen life cycle is important for the development of effective control strategies. Current knowledge is incomplete owing to a lack of effective detection methods. It is extremely difficult to culture in vitro, so primers were designed to amplify and sequence the internal transcribed spacer ITS1-5.8S-ITS2 region of the fungus directly from infected olive leaves. Sanger sequencing indicated a unique ITS region present in the European strains screened, confirming the appropriateness of the target region for developing a quantitative PCR (qPCR) assay. Furthermore, high-throughput sequencing of the same region excluded the presence of other species in the olive phyllosphere. The qPCR assay proved very specific and sensitive, enabling the detection of approximately 26 copies of target DNA. The analysis of symptomless leaves during early stages of the epidemic from the end of winter through spring revealed a similar quantity of pathogen DNA regardless of the leaf growth stage. In contrast, the pathogen titer changed significantly during the season. Data indicated that leaf infections start earlier than expected over the season and very young leaves are as susceptible as adult leaves. These findings have important practical implications and suggest the need for improved scheduling of fungicide treatments. The qPCR assay represents a valuable tool providing quantitative results and enables detection of in all olive organs, including those in which OLS cannot be studied using previously available methods.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-07-19-0227-RDOI Listing

Publication Analysis

Top Keywords

qpcr assay
12
quantitative pcr
8
olive leaves
8
olive
6
leaves
5
region
5
development application
4
application quantitative
4
detection
4
pcr detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!