MYC was found to be involved in many germinal center derived lymphomas, and more recently in the histological transformation of indolent mature B-cell malignancies, such as follicular lymphoma (FL), chronic lymphocytic leukemia (CLL) and mucosa-associated lymphoid tissue lymphoma (MALT) to aggressive diffuse large B-cell lymphoma (DLBCL). Pathological MYC activity gain in lymphomas is able to overcome its regulation by repressors, which leads to bypassing the affinity-based selection of B-cells. Arguably the MYC activity gain is the most constantly observed phenomenon (>70% of cases) in transformed FL/MALT/CLL (Richter's transformation) and co-occurs with specific aberrations such as the loss of p53, CDKN2A/B, or gain of BCL2/BCL6. Here we summarize recent progress in the understanding of MYC regulatory network in lymphoma B-cells and highlight its involvement in lymphomas' histological transformation by regulating cyclins, CDKs, p21, p27, BCL2, E2F, FOXP1, BCR signaling components, and non-coding microRNA (miRNA) genes such as and .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10428194.2019.1675877 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!