Antibacterial coatings have drawn much attention because of their high potential applications in medicine. However, the weak mechanical property, poor biosafety, and biocompatibility of most established antibacterial coatings restrict their applications. In this study, robust antibacterial coatings were fabricated via a simple organic-inorganic hybrid method. The polymer component provides an excellent antibacterial property to the coatings, and the hybrid silica sol improves the hardness of coatings. After cross-linking, network-structured coatings were formed. The coating surfaces exhibited high transmittance, excellent mechanical property, and good antibacterial effect against (Gram-negative) and (Gram-positive). Additionally, the robust coatings were noncytotoxic with satisfactory biocompatibility. Such results provide a theoretical basis for their applications in the biomedical field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b15031 | DOI Listing |
Small
January 2025
School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China.
The ancient proverb "disease enters through the mouth" elucidates the connection between food and pathogens, underscoring the pivotal role of food preservation in preventing foodborne diseases. Drawing inspiration from ancient food preservation techniques such as waxing and the use of spices, a novel approach combining the deprotonation-induced solid-liquid phase separation of natural polymer solutions with the solubilization of plant-derived antibacterial compounds has been developed. The "two-step soaking" construction strategy enables the creation of biodegradable and adaptable for hydrogel coatings with micro-scale thickness.
View Article and Find Full Text PDFChempluschem
January 2025
NCSR Demokritos: Ethniko Kentro Ereunas Physikon Epistemon Demokritos, Institute of Physical Chemistry, Patriarchou Gregoriou and Neapoleos, Aghia Paraskevi, Attiki, 15310, Athens, GREECE.
The hydrophilic character and the protection against pathogen proliferation are the most pivotal characteristics of leathers intended for medical purposes. To achieve these goals, dispersions of TiO2 particles incorporating three different formulations of biomimetically synthesized silica xerogels were tested. Emphasis has been given to the role of single and dual solvents employed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CIC nanoGUNE, Donostia-San Sebastián 20018, Spain.
Inspired by the properties of natural chitin, the present work provides the first solid foundation for growing conformal ultrathin antibacterial films of organic chitin through a solvent-free molecular layer deposition (MLD) process. This work establishes the initial groundwork for growing biomimetic hybrid cuticles by combining sugar-type molecules with vapor-phase metal-organic precursors, which we term metallochitins or, more generally, metallosaccharides. The MLD process, featuring mild temperatures and solvent-free conditions, provides exceptional conformality and thickness precision, ensuring highly conformal coatings on diverse high aspect ratio substrates.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. Electronic address:
Functional coating materials have found extensive applications across various technological fields. However, the effectiveness of these coating depends critically on the choice of an appropriate medium. In this study, we developed an advanced "molecular glue", a CsgA variant known as CsgA-pro, which can serve as a versatile medium for biotherapy.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, (Sangrur) Punjab, India.
Ash gourd (Benincasa hispida) is cultivated for its medicinal benefits, with processing enhancing its health properties and shelf life. The processing industries generate significant byproducts, with peel and seeds common across all methods, along with lime (from petha sweet production), brine wastewater (from fermented foods), and pulp from juice processing. This review focuses on peel, seeds, and lime wastewater, which contain valuable compounds like polyphenols, terpenoids, essential oils, and ribosome-inactivating proteins known for their antioxidant and antibacterial properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!