Mounting evidence has indicated that long non-coding RNA maternally expressed gene 3 (lncRNA MEG3) regulates cell apoptosis, and is involved in a variety of diseases. However, its exact role in myocardial infarction (MI) has not been fully elucidated. In the present study, we firstly observed that the expression levels of the lncRNA MEG3 in infarct hearts and hypoxic neonatal mice ventricular myocytes (NMVMs) were up-regulated by quantitative real-time PCR (qRT-PCR). Then, we knocked down lncRNA MEG3 by lentiviral delivery in the myocardial border region following multipoint injection. Following 28 days of MI, the lncRNA MEG3 knockdown mice indicated better cardiac function, and less cardiac remodelling by ultrasonic cardiogram and histological analysis. In addition, we indicated that lncRNA MEG3 knockdown reduced myocyte apoptosis and reactive oxygen species production in MI mice model and hypoxic NMVMs. Furthermore, we revealed that knockdown of lncRNA MEG3 protected against endoplasmic reticulum stress (ERS)-mediated myocardial apoptosis including the induction of PERK-eIF2α and caspase 12 pathways. At last, we provided evidence that p53 was identified as a protein target of lncRNA MEG3 to regulate NF-κB- and ERS-associated apoptosis. Taken collectively, our findings demonstrated that lncRNA MEG3 knockdown exerted cardioprotection by reducing ERS-mediated apoptosis through targeting p53 post-MI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850962PMC
http://dx.doi.org/10.1111/jcmm.14714DOI Listing

Publication Analysis

Top Keywords

lncrna meg3
32
meg3 knockdown
16
meg3
9
long non-coding
8
non-coding rna
8
endoplasmic reticulum
8
apoptosis targeting
8
targeting p53
8
myocardial infarction
8
lncrna
8

Similar Publications

Introduction: Heart failure (HF) has a very high prevalence in patients with maintenance hemodialysis (MHD). However, there is still a lack of effective and reliable HF diagnostic markers and therapeutic targets for patients with MHD.

Methods: In this study, we analyzed transcriptome profiles of 30 patients with MHD by high-throughput sequencing.

View Article and Find Full Text PDF

Cracking the code: lncRNA-miRNA-mRNA integrated network analysis unveiling lncRNAs as promising non-invasive NAFLD biomarkers toward precision diagnosis.

Comput Biol Chem

January 2025

Institute of Global Health and Human Ecology (IGHHE), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt. Electronic address:

Background: Non-alcoholic fatty liver disease (NAFLD) involves abnormal fat accumulation in the liver, mainly as triglycerides. It ranges from steatosis to non-alcoholic steatohepatitis (NASH), which can lead to inflammation, cellular damage, liver fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) are crucial for regulating gene expression across various conditions.

View Article and Find Full Text PDF

Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder characterized by the progressive loss of nigrostriatal dopaminergic neurons (DA) which can be caused by environmental and genetic factors. lncRNAs have emerged as an important regulatory layer in neurodegenerative disorders, including PD. In this study, we investigated and validated lncRNAs that may serve as diagnostic or therapeutic targets for PD.

View Article and Find Full Text PDF

Aims: To investigate the biological impact of simultaneous overexpression of lncRNA MEG3 and miR-155, termed a "double hit," on multiple myeloma (MM) cells compared to individual biomarker substitution.

Materials And Methods: Human MM cells were transfected with MEG3-overexpressed plasmids and miR-155 mimics. Cell cytotoxicity, apoptosis, and gene expression were evaluated in transfected cells and clinical samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!