Dengue NS2A Protein Orchestrates Virus Assembly.

Cell Host Microbe

Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, USA; Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, Texas, USA; Institute for Translational Science, University of Texas Medical Branch, Galveston, Texas, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA. Electronic address:

Published: November 2019

Dengue virus assembly requires cleavage of viral C-prM-E polyprotein into three structural proteins (capsid, premembrane, and envelope), packaging of viral RNA with C protein into nucleocapsid, and budding of prM and E proteins into virions. The molecular mechanisms underlying these assembly events are unclear. Here, we show that dengue nonstructural protein 2A (NS2A protein) recruits viral RNA, structural proteins, and protease to the site of virion assembly and coordinates nucleocapsid and virus formation. The last 285 nucleotides of viral 3' UTR serve as a "recruiting signal for packaging" that binds to a cytosolic loop of NS2A. This interaction allows NS2A to recruit nascent RNA from the replication complex to the virion assembly site. NS2A also recruits the C-prM-E polyprotein and NS2B-NS3 protease to the virion assembly site by interacting with prM, E, and NS3, leading to coordinated C-prM-E cleavage. Mature C protein assembles onto genomic RNA to form nucleocapsid, followed by prM and E envelopment and virion formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2019.09.015DOI Listing

Publication Analysis

Top Keywords

virion assembly
12
ns2a protein
8
virus assembly
8
c-prm-e polyprotein
8
structural proteins
8
viral rna
8
assembly site
8
assembly
6
protein
5
dengue ns2a
4

Similar Publications

The endoplasmic reticulum as a cradle for virus and extracellular vesicle secretion.

Trends Cell Biol

December 2024

Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Université Montpellier, Montpellier, France. Electronic address:

Extracellular vesicles (EVs) are small membranous carriers of protein, lipid, and nucleic acid cargoes and play a key role in intercellular communication. Recent work has revealed the previously under-recognized participation of endoplasmic reticulum (ER)-associated proteins (ERAPs) during EV secretion, using pathways reminiscent of viral replication and secretion. Here, we present highlights of the literature involving ER/ERAPs in EV biogenesis and propose mechanistic parallels with ERAPs exploited during viral infections.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious virus affecting pigs with significant impacts to the swine industry worldwide. This review provides a comprehensive understanding of post-translational modifications (PTMs) associated with PRRSV infection. We discuss the various types of PTMs, including phosphorylation, ubiquitination, SUMoylation, acetylation, glycosylation, palmitoylation, and lactylation, that occur during PRRSV infection.

View Article and Find Full Text PDF

Porcine epidemic diarrhea virus (PEDV) induces enteritis and diarrhea in piglets. Mitochondrial DNA (mtDNA) contributes to virus-induced inflammatory responses; however, the involvement of inflammasomes in PEDV infection responses remains unclear. We investigated the mechanism underlying inflammasome-mediated interleukin (IL)-1β secretion during the PEDV infection of porcine intestinal epithelial (IPEC-J2) cells.

View Article and Find Full Text PDF

3D-Printed Self-Assembling Helical Models for Exploring Viral Capsid Structures.

Biomimetics (Basel)

December 2024

Departments of Biological Sciences and Mathematical Sciences, University of Delaware, Newark, DE 19716, USA.

This work presents a novel application of additive manufacturing in the design of self-assembling helical viral capsids using 3D-printed components. Expanding on prior work with 3D-printed self-assembling spherical capsids, we developed helical models that integrate geometric parameters and magnetic interactions to mimic key features of the assembly process of helical viral capsids. Using dual-helix phyllotactic patterns and simplified electrostatic simulations, these models consistently self-assemble into a cylinder, providing unique insights into the structural organization and stability of helical capsids.

View Article and Find Full Text PDF

HIV-1 unspliced RNA serves two distinct functions during viral replication: it is packaged into particles as the viral genome, and it is translated to generate Gag/Gag-Pol polyproteins required for virus assembly. Recent studies have demonstrated that in cultured cells, HIV-1 uses multiple transcription start sites to generate several unspliced RNA species, including two major transcripts with three and one 5' guanosine, referred to as 3G and 1G RNA, respectively. Although nearly identical, 1G RNA is selected over 3G RNA to be packaged as the virion genome, indicating that these RNA species are functionally distinct.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!