Dengue virus assembly requires cleavage of viral C-prM-E polyprotein into three structural proteins (capsid, premembrane, and envelope), packaging of viral RNA with C protein into nucleocapsid, and budding of prM and E proteins into virions. The molecular mechanisms underlying these assembly events are unclear. Here, we show that dengue nonstructural protein 2A (NS2A protein) recruits viral RNA, structural proteins, and protease to the site of virion assembly and coordinates nucleocapsid and virus formation. The last 285 nucleotides of viral 3' UTR serve as a "recruiting signal for packaging" that binds to a cytosolic loop of NS2A. This interaction allows NS2A to recruit nascent RNA from the replication complex to the virion assembly site. NS2A also recruits the C-prM-E polyprotein and NS2B-NS3 protease to the virion assembly site by interacting with prM, E, and NS3, leading to coordinated C-prM-E cleavage. Mature C protein assembles onto genomic RNA to form nucleocapsid, followed by prM and E envelopment and virion formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chom.2019.09.015 | DOI Listing |
Trends Cell Biol
December 2024
Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Université Montpellier, Montpellier, France. Electronic address:
Extracellular vesicles (EVs) are small membranous carriers of protein, lipid, and nucleic acid cargoes and play a key role in intercellular communication. Recent work has revealed the previously under-recognized participation of endoplasmic reticulum (ER)-associated proteins (ERAPs) during EV secretion, using pathways reminiscent of viral replication and secretion. Here, we present highlights of the literature involving ER/ERAPs in EV biogenesis and propose mechanistic parallels with ERAPs exploited during viral infections.
View Article and Find Full Text PDFVet Sci
December 2024
Pingliang Vocational and Technical College, Pingliang 744000, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious virus affecting pigs with significant impacts to the swine industry worldwide. This review provides a comprehensive understanding of post-translational modifications (PTMs) associated with PRRSV infection. We discuss the various types of PTMs, including phosphorylation, ubiquitination, SUMoylation, acetylation, glycosylation, palmitoylation, and lactylation, that occur during PRRSV infection.
View Article and Find Full Text PDFVet Sci
December 2024
Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences, Kemao Street No. 186, Gongzhuling 136100, China.
Porcine epidemic diarrhea virus (PEDV) induces enteritis and diarrhea in piglets. Mitochondrial DNA (mtDNA) contributes to virus-induced inflammatory responses; however, the involvement of inflammasomes in PEDV infection responses remains unclear. We investigated the mechanism underlying inflammasome-mediated interleukin (IL)-1β secretion during the PEDV infection of porcine intestinal epithelial (IPEC-J2) cells.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Departments of Biological Sciences and Mathematical Sciences, University of Delaware, Newark, DE 19716, USA.
This work presents a novel application of additive manufacturing in the design of self-assembling helical viral capsids using 3D-printed components. Expanding on prior work with 3D-printed self-assembling spherical capsids, we developed helical models that integrate geometric parameters and magnetic interactions to mimic key features of the assembly process of helical viral capsids. Using dual-helix phyllotactic patterns and simplified electrostatic simulations, these models consistently self-assemble into a cylinder, providing unique insights into the structural organization and stability of helical capsids.
View Article and Find Full Text PDFmBio
December 2024
Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA.
HIV-1 unspliced RNA serves two distinct functions during viral replication: it is packaged into particles as the viral genome, and it is translated to generate Gag/Gag-Pol polyproteins required for virus assembly. Recent studies have demonstrated that in cultured cells, HIV-1 uses multiple transcription start sites to generate several unspliced RNA species, including two major transcripts with three and one 5' guanosine, referred to as 3G and 1G RNA, respectively. Although nearly identical, 1G RNA is selected over 3G RNA to be packaged as the virion genome, indicating that these RNA species are functionally distinct.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!