Metabolomic profiling identifies pathways associated with minimal residual disease in childhood acute lymphoblastic leukaemia.

EBioMedicine

Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA; Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Houston TX, USA; Department of Paediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston TX, USA.

Published: October 2019

Background: End-induction minimal residual disease (MRD) is the strongest predictor of relapse in paediatric acute lymphoblastic leukaemia (ALL), but an understanding of the biological pathways underlying early treatment response remains elusive. We hypothesized that metabolomic profiling of diagnostic bone marrow plasma could provide insights into the underlying biology of early treatment response and inform treatment strategies for high-risk patients.

Methods: We performed global metabolomic profiling of samples from discovery (N = 93) and replication (N = 62) cohorts treated at Texas Children's Hospital. Next, we tested the cytotoxicity of drugs targeting central carbon metabolism in cell lines and patient-derived xenograft (PDX) cells.

Findings: Metabolite set enrichment analysis identified altered central carbon and amino acid metabolism in MRD-positive patients from both cohorts at a 5% false discovery rate. Metabolites from these pathways were used as inputs for unsupervised hierarchical clustering. Two distinct clusters were identified, which were independently associated with MRD after adjustment for immunophenotype, cytogenetics, and NCI risk group. Three nicotinamide phosphoribosyltransferase (NAMPT) inhibitors, which reduce glycolytic/TCA cycle activities, demonstrated nanomolar-range cytotoxicity in B- and T-ALL cell lines and PDX cells.

Interpretation: This study provides new insights into the role of central carbon metabolism in early treatment response and as a potential targetable pathway in high-risk disease.

Funding: American Society of Hematology; Baylor College of Medicine Department of Paediatrics; Cancer Prevention and Research Institute of Texas; the Lynch family; St. Baldrick's Foundation with support from the Micaela's Army Foundation; United States National Institutes of Health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838385PMC
http://dx.doi.org/10.1016/j.ebiom.2019.09.033DOI Listing

Publication Analysis

Top Keywords

metabolomic profiling
12
early treatment
12
treatment response
12
central carbon
12
minimal residual
8
residual disease
8
acute lymphoblastic
8
lymphoblastic leukaemia
8
carbon metabolism
8
cell lines
8

Similar Publications

Article Synopsis
  • This study investigates how metabolic profiles change in patients with patent foramen ovale (PFO) and migraines before and after surgery, using metabolomics techniques.
  • Significant differences in metabolites like linoleic acid and quinolinic acid were observed after surgery, indicating potential diagnostic markers for these patients.
  • The research highlights the importance of metabolic pathways related to inflammation and oxidative stress in understanding migraines associated with PFO.
View Article and Find Full Text PDF

Cadmium translocation combined with metabolomics analysis revealed potential mechanisms of MT@MSN-CS and GSH@MSN-CS in reducing cadmium accumulation in rice (Oryza sativa L.) grains.

Environ Sci Pollut Res Int

January 2025

Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Department of Environmental Engineering, Zhejiang University, Zhejiang Province, Hangzhou, 310058, P.R. China.

Applying nano-delivery systems for phytohormones via foliar application has proven effective in reducing grain cadmium (Cd) levels in crops. However, the mechanisms underlying this reduction remain inadequately understood. This study integrated the determination of leaf photosynthetic parameters, Cd translocation analysis, and metabolomics to elucidate the effects of reduced glutathione (GSH) and melatonin (MT), delivered with or without chitosan-encapsulated mesoporous silica nanoparticles (MSN-CS), on grain Cd levels in rice.

View Article and Find Full Text PDF
Article Synopsis
  • This study examines how serum metabolite profiles can help understand feed efficiency in lactating Holsteins and identify biomarkers for predicting residual feed intake (RFI).
  • Comparisons were made between high and low RFI cows at different lactation stages, revealing significant differences in various metabolites, especially notable changes in early and mid-lactation.
  • The findings suggest that specific metabolites, like p-Hydroxyhippuric acid and acetylornithine, could serve as effective biomarkers for predicting RFI, with models showing varying predictive accuracy across lactation stages.
View Article and Find Full Text PDF
Article Synopsis
  • The red king crab and Japanese mitten crab are important for both their nutritional value and ecological research.
  • A study focused on the changes in lipid profiles during the crabs' embryonic and larval stages, highlighting how triacylglycerols disappeared in early larvae but reappeared later with different compositions.
  • The research revealed species-specific demands for polyunsaturated fatty acids, which could guide better diet selection in aquaculture practices.
View Article and Find Full Text PDF

Chronic stress disrupts gut microbiota homeostasis, contributing to anxiety and depression. This study explored the effects of Limosilactobacillus reuteri fermented brown rice (FBR) on anxiety using an ICR mouse chronic mild stress (CMS) model. Anxiety was assessed through body weight, corticosterone levels, neurotransmitter profiles, and behavioral tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!