Background: Glioma is the most common primary malignant tumor in the central nervous system with frequent hypoxia and angiogenesis. Limb-Bud and Heart (LBH) is a highly conserved transcription cofactor that participates in embryonic development and tumorigenesis.
Methods: The conditioned media from LBH regulated human glioma cell lines and patient-derived glioma stem cells (GSCs) were used to treat the human brain microvessel endothelial cells (hBMECs). The function of LBH on angiogenesis were examined through methods of MTS assay, Edu assay, TUNEL assay, western blotting analysis, qPCR analysis, luciferase reporter assay and xenograft experiment.
Findings: Our study found for the first time that LBH was overexpressed in gliomas and was associated with a poor prognosis. LBH overexpression participated in the angiogenesis of gliomas via the vascular endothelial growth factor A (VEGFA)-mediated extracellular signal-regulated kinase (ERK) signalling pathway in human brain microvessel endothelial cells (hBMECs). Rapid proliferation of gliomas can lead to tissue hypoxia and hypoxia inducible factor-1 (HIF-1) activation, while HIF-1 can directly transcriptionally regulate the expression of LBH and result in a self-reinforcing cycle.
Interpretation: LBH may be a possible treatment target to break the vicious cycle in glioma treatment. : .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838451 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2019.09.037 | DOI Listing |
Differentiation
December 2024
University of California, Los Angeles, Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, USA. Electronic address:
During the discovery of the Fibroblast Growth Factor superfamily, scientists were determined to uncover all the genes that encoded FGF proteins. In 1998, FGF16 was discovered with classical cloning techniques in human and rat heart samples. FGF16 loss- and gain-of-function experiments in several organisms demonstrated a conserved function in vertebrates, and as a component of the FGF9 subfamily of ligands (FGF-E/-9/-20), is functionally conserved and sufficient to rescue loss-of-function phenotypes in invertebrates, like C.
View Article and Find Full Text PDFCancer Cell Int
November 2024
Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China.
Glioblastoma (GBM) is the most lethal and common primary tumor of central nervous system with a poor prognosis. Glioma stem cells (GSCs) are particularly significant in GBM proliferation, invasion, self-renewal and recurrence. Circular RNAs (circRNAs) play important roles in various physiological and pathological processes, including regulating the biological behavior of GBM.
View Article and Find Full Text PDFElife
June 2024
School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
Erectile dysfunction (ED) affects a significant proportion of men aged 40-70 and is caused by cavernous tissue dysfunction. Presently, the most common treatment for ED is phosphodiesterase 5 inhibitors; however, this is less effective in patients with severe vascular disease such as diabetic ED. Therefore, there is a need for development of new treatment, which requires a better understanding of the cavernous microenvironment and cell-cell communications under diabetic condition.
View Article and Find Full Text PDFGenesis
June 2024
Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, North Carolina, USA.
HAND2 is a basic helix-loop-helix transcription factor with diverse functions during development. To facilitate the investigation of genetic and functional diversity among Hand2-expressing cells in the mouse, we have generated Hand2, a knock-in allele expressing Dre recombinase. To avoid disrupting Hand2 function, the Dre cDNA is inserted at the 3' end of the Hand2 coding sequence following a viral 2A peptide.
View Article and Find Full Text PDFiScience
May 2024
Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People's Republic of China.
Myocardial ischemia-reperfusion (I/R) injury stands out among cardiovascular diseases, and current treatments are considered unsatisfactory. For cardiomyocytes (CMs) in ischemic tissues, the upregulation of Limb-bud and Heart (LBH) and αB-crystallin (CRYAB) and their subsequent downregulation in the context of cardiac fibrosis have been verified in our previous research. Here, we focused on the effects and mechanisms of activated LBH-CRYAB signaling on damaged CMs during I/R injury, and confirmed the occurrence of mitochondrial apoptosis and ferroptosis during I/R injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!