AdipoRon Attenuates Wnt Signaling by Reducing Cholesterol-Dependent Plasma Membrane Rigidity.

Biophys J

Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas; Interdisciplinary Faculty of Toxicology Program, Texas A&M University, College Station, Texas; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas; Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas; Center for Environmental Health Research, Texas A&M University, College Station, Texas. Electronic address:

Published: February 2020

The increasing prevalence of adult and adolescent obesity and its associated risk of colorectal cancer reinforces the urgent need to elucidate the underlying mechanisms contributing to the promotion of colon cancer in obese individuals. Adiponectin is an adipose tissue-derived adipokine, whose levels are reduced during obesity. Both epidemiological and preclinical data indicate that adiponectin suppresses colon tumorigenesis. We have previously demonstrated that both adiponectin and AdipoRon, a small-molecule adiponectin receptor agonist, suppress colon cancer risk in part by reducing the number of Lgr5 stem cells in mouse colonic organoids. However, the mechanism by which the adiponectin signaling pathway attenuates colon cancer risk remains to be addressed. Here, we have hypothesized that adiponectin signaling supports colonic stem cell maintenance through modulation of the biophysical properties of the plasma membrane (PM). Specifically, we investigated the effects of adiponectin receptor activation by AdipoRon on the biophysical perturbations linked to the attenuation of Wnt-driven signaling and cell proliferation as determined by LEF luciferase reporter assay and colonic organoid proliferation, respectively. Using physicochemical sensitive dyes, Di-4-ANEPPDHQ and C-laurdan, we demonstrated that AdipoRon decreased the rigidity of the colonic cell PM. The decrease in membrane rigidity was associated with a reduction in PM free cholesterol levels and the intracellular accumulation of free cholesterol in lysosomes. These results suggest that adiponectin signaling plays a role in modulating cellular cholesterol homeostasis, PM biophysical properties, and Wnt-driven signaling. These findings are noteworthy because they may in part explain how obesity drives colon cancer progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036725PMC
http://dx.doi.org/10.1016/j.bpj.2019.09.009DOI Listing

Publication Analysis

Top Keywords

colon cancer
16
adiponectin signaling
12
plasma membrane
8
membrane rigidity
8
adiponectin
8
adiponectin receptor
8
cancer risk
8
biophysical properties
8
wnt-driven signaling
8
free cholesterol
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!