Extrapolating the recent progress in the near future the extensive utilization of cofactor-dependent enzymes (enzymes of the 3rd generation) for solving economic or medical problems will be restricted by the difficulties of cofactor regeneration. Real possibilities exist in analytical systems, for instance enzyme electrodes. In the present paper a special case of overcoming the cofactor regeneration in P-450 catalyzed substrate hydroxylation is demonstrated: The peroxide-dependent reaction gives the same products as obtained under physiological conditions; that is why in an electro-enzyme-reactor producing hydrogen peroxide by cathodic oxygen reduction a considerable simplification of the multi-enzyme complex is possible by omitting electron transfer proteins. At present the main problem is the instability of the terminal oxidase. Attempts are being made to solve these problems by immobilizing the protein or substituting P-450 by other hemoproteins or iron porphyrin derivatives.

Download full-text PDF

Source

Publication Analysis

Top Keywords

substrate hydroxylation
8
cofactor regeneration
8
aspects application
4
application cytochrome
4
cytochrome p-450
4
p-450 systems
4
systems substrate
4
hydroxylation extrapolating
4
extrapolating progress
4
progress future
4

Similar Publications

Non-haem iron (Fe) and 2-oxoglutarate(2OG)-dependent dioxygenases catalyse various biological reactions. These enzymes couple the oxidative decarboxylation of 2OG to the hydroxylation of the substrates. While some of these enzymes are reported to have multiple substrates, the substrate remains unknown for many of the enzymes.

View Article and Find Full Text PDF

Fatty acid peroxygenases have emerged as promising biocatalysts for hydrocarbon biosynthesis due to their ability to perform C-C scission, producing olefins - key building blocks for sustainable materials and fuels. These enzymes operate through non-canonical and complex mechanisms that yield a bifurcated chemoselectivity between hydroxylation and decarboxylation. In this study, we elucidate structural features in P450 decarboxylases that enable the catalysis of unsaturated substrates, expanding the mechanistic pathways for decarboxylation reaction.

View Article and Find Full Text PDF

Polymeric coatings that combine resistance to adhesion ("defending") and killing ("attacking") of biocontaminants were proposed to endow the surface with nonadhesive and bactericidal capabilities. In contrast, a zwitterionic copolymer P(GMA--DMAPS) with antifouling groups ([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, DMAPS) and a zwitterionic/cationic copolymer P(GMA--DMAPS--DMC) with bactericidal groups ([2-(methacryloyloxy)ethyl]trimethylammonium chloride, DMC) were synthesized, of which the latter exhibited synergistic inhibitory and killing properties. The distinct feed ratios of monomers were conducted, and the optimal molar ratio was obtained.

View Article and Find Full Text PDF

A new photopolymerizable organic-inorganic (O-I) hybrid sol-gel material, AUP@SiO-184, has been synthesized and utilized as a gate dielectric in flexible organic thin-film transistors (OTFTs). The previously reported three-arm alkoxy-functionalized silane amphiphilic polymer has yielded stable O-I hybrid materials comprising uniformly dispersed nanoparticles in the sol state. In this study, a photosensitizer was introduced, facilitating curing effects under ultraviolet light.

View Article and Find Full Text PDF

Background: Human cytochrome P450 1B1 (CYP1B1) is an extrahepatic enzyme that is overexpressed in many tumors and is associated with tumor development and acquired resistance. Few studies have reported that anthraquinone compounds have inhibitory activity against the CYP1B1 enzyme. Cassiae semen (Leguminosae) is a well-known traditional Chinese medicine containing more than 70 compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!