Contrasting common measures of arbuscular mycorrhizal fungal root colonization.

J Microbiol Methods

Department of Biology, University of British Columbia, Okanagan campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada.

Published: December 2019

AI Article Synopsis

  • Estimating arbuscular mycorrhizal fungi abundance relies on indirect methods, primarily using microscopic analysis of root colonization, which can introduce variability and bias due to sampling.
  • Researchers assessed two common microscopic methods (Trouvelot and McGonigle) alongside a new imaging technique that measures fungal coverage via microphotography.
  • Results indicated that both microscopic methods tended to overestimate colonization and that the Trouvelot method closely aligned with the imaging analysis, whereas the McGonigle method showed more discrepancy.

Article Abstract

Estimating the abundance of arbuscular mycorrhizal fungi relies entirely on indirect methods, meaning all measures are associated with some variability. The most common methods use microscopic estimates of the relative proportion of root length colonized by fungal structures. These methods typically examine root subsamples. While such methods are inexpensive and relatively simple, significant variation within single root system means there is opportunity for sampling bias. We evaluated the two most common methods of percent root length colonization for AM fungi both as a subsample and for the entire root system of flax plants. We compared these measures to a novel technique that returns projected fungal surface area (fungal coverage), by using microphotography and imaging analysis. Both microscopic methods overestimated the colonization intensity compared to image analysis. Among the microscopic methods, the method which incorporated colonization intensity (Trouvelot) was significantly more similar to imaging method results, than the method that is based on the presence/absence of the fungus (McGonigle).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2019.105727DOI Listing

Publication Analysis

Top Keywords

arbuscular mycorrhizal
8
common methods
8
root length
8
root system
8
analysis microscopic
8
microscopic methods
8
colonization intensity
8
methods
7
root
6
contrasting common
4

Similar Publications

Root and mycorrhizal nutrient acquisition strategies in the succession of subtropical forests under N and P limitation.

BMC Plant Biol

January 2025

Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.

Background: Nutrient limitation is a universal phenomenon in terrestrial ecosystems. Root and mycorrhizal are critical to plant nutrient absorption in nutrient-limited ecosystems. However, how they are modified by N and P limitations with advancing vegetation successions in karst forests remains poorly understood.

View Article and Find Full Text PDF

Legume plants can interact with nitrogen-fixing rhizobia bacteria and arbuscular mycorrhizal fungi (AMF) simultaneously, forming a tripartite symbiotic association. Co-inoculation studies performed on a variety of legumes have shown that rhizobia and AMF influence each other when they co-occur in tripartite association and affect host plant nutrition and performance. Although single plant-microbe interactions have been extensively studied, our understanding in the field of tripartite interactions is insufficient and current knowledge cannot predict the symbiotic outcome, which appears to depend on many parameters.

View Article and Find Full Text PDF

The production of medicinal plants under stressful environments offers an alternative to meet the requirements of sustainable agriculture. The action of mycorrhizal fungus; Funneliformis mosseae and zinc in stimulating growth and stress tolerance in medicinal plants is an intriguing area of research. The current study evaluated the combined use of nano-zinc and mycorrhizal fungus on the physiochemical responses of Dracocephalum moldavica under salinity stress.

View Article and Find Full Text PDF

To investigate the effects of row ratio configurations on intercropping advantages and related rhizosphere microbial communities, a field experiment involving five treatments of different rows of broomcorn millet, i.e., P1M1 (1 row of broomcorn millet intercropped with 1 row of alfalfa), P2M3, P1M2, P1M3 and broomcorn millet alone (SP), was conducted on the Loess Plateau of China.

View Article and Find Full Text PDF

To improve the selenium (Se) uptake in grapes, the effects of arbuscular mycorrhizal fungi (AMF) on the Se accumulation in grapevines were studied under a soil Se concentration of 5 mg/kg, and the transcriptome and metabolome sequencing were used to elucidate the regulatory mechanism of AMF on Se accumulation. AMF initially decreased the biomass of grapevines, but later increased the biomass. Moreover, AMF enhanced the activities of Se metabolism enzymes (adenosine triphosphate sulfurylase, adenosine 5'-phosphosulfate reductase, serine acetyltransferase, and cysteine methyltransferase) and the Se concentration in grapevines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!