Identification of two additional plasmodesmata localization domains in the tobacco mosaic virus cell-to-cell-movement protein.

Biochem Biophys Res Commun

Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Science, Kunming, Yunnan, 650201, China. Electronic address:

Published: January 2020

Despite decades of intensive studies, the failure to identify plasmodesmata (PD) localization sequences has constrained our understanding of Tobacco mosaic virus (TMV) movement. Recently, we identified the first PD localization signal (major PLS) in the TMV movement protein (MP), which encompasses the first 50 amino acid residues of the MP. Although the major PLS is sufficient for PD targeting, the efficiency is lower than the full-length TMV MP. To address this efficiency gap, we identified two additional PLS domains encompassing amino acid residues 61 to 80, and 147 to 170 of the MP and showed that these two domains target to PD, but do not transit to adjacent cells. We also demonstrated that the MP fragment interacts with Arabidopsis synaptotagmin A, which was also shown to interact with the major TMV MP PLS. Therefore, our findings have provided new insights to more fully understand the mechanism underlying plasmodesmal targeting of TMV MP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.10.093DOI Listing

Publication Analysis

Top Keywords

plasmodesmata localization
8
tobacco mosaic
8
mosaic virus
8
tmv movement
8
major pls
8
amino acid
8
acid residues
8
tmv
5
identification additional
4
additional plasmodesmata
4

Similar Publications

The small flowers of Myosotis scorpioides are pollinated by various groups of insects feeding on their nectar accumulating at the base of the corolla tube. To date, only few studies have focused on the anatomy and ultrastructure of nectaries in plants from the family Boraginaceae. The aim of this study was to analyse the structure of the M.

View Article and Find Full Text PDF

Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved in both plants and animals and play critical roles in activating innate immunity to defend against various pathogens. However, the role of MAPK cascades in positively regulating or enhancing viral infections in plants is unclear. In this study, we investigate the involvement of MAPK cascades in infection by the positive-strand RNA virus tomato chlorosis virus (ToCV).

View Article and Find Full Text PDF

Plasmodesmata are membranous nanopores that connect the cytoplasm of adjacent plant cells and enable the cell-to-cell trafficking of nutrients, macromolecules, as well as invading viruses. Plasmodesmata play fundamental roles in the regulation of intercellular communication, contributing to plant development, environmental responses, and interactions with viral pathogens. Discovering plasmodesmal localization of plant or viral proteins could provide useful functional information about the protein and is important for understanding the mechanisms of plant-virus interactions.

View Article and Find Full Text PDF

Discovery and characterization of a novel carlavirus in Ligularia jaluensis plants.

Virol Sin

November 2024

Hainan Institute of Zhejiang University, Sanya, 572025, China; State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Ligularia jaluensis is an important medicinal and ornamental plant in China. However, the viruses capable of infecting Ligularia jaluensis remains unknown. Here, we identified a novel carlavirus, tentatively named ligularia jaluensis carlavirus (LJCV), as well as a known iris severe mosaic virus (ISMV), in L.

View Article and Find Full Text PDF

Pathogenesis-related (PR) proteins are induced by abiotic and biotic stresses and generally considered as part of the plant defense mechanism. However, it remains yet largely unclear if and how they are involved in virus infection. Our recent quantitative, comparative proteomic study identified three PR-5 family proteins that are significantly differentially accumulated in the plasmodesmata (PD)-enriched fraction isolated from Nicotiana benthamiana leaves infected by turnip mosaic virus (TuMV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!