The use of algae is an effective approach to remove phenol and its derivatives from polluted water. The growth behavior, glucose consumption and phenol removal efficiency of Chlorella vulgaris under the synergistic effects of glucose and phenol were investigated. The evolutions of tolerance and removal efficiency of C. vulgaris to phenol under different trophic modes and glucose contents were observed. The results revealed that growth of C. vulgaris were inhibited with the increase of phenol from 0 to 400 mg L in culture media; the tolerance to phenol enhanced with the addition of glucose from 2 to 10 g L, while glucose consumption was inhibited with the increase of phenol content; phenol removal efficiency varied with glucose concentrations in mixotrophic media. The finding suggested that phenol inhibited the growth of C. vulgaris and glucose assimilation under mixotrophic cultivation, while appropriate glucose addition could enhance the tolerance of C. vulgaris to phenol and affect the phenol removal efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.109762DOI Listing

Publication Analysis

Top Keywords

removal efficiency
20
phenol removal
16
phenol
13
glucose consumption
12
glucose
10
growth behavior
8
behavior glucose
8
consumption phenol
8
efficiency chlorella
8
chlorella vulgaris
8

Similar Publications

This study evaluates the potential of ozonated corn starch (OCS) and ultrasonicated ozonated corn starch (USOCS) as adsorbents for patulin removal in buffer solutions. The results indicated that dual modification significantly altered the starch's structure, introducing functional groups such as carbonyl and carboxyl groups, and increasing its surface area. These modifications led to enhanced patulin adsorption capacity.

View Article and Find Full Text PDF

The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase.

View Article and Find Full Text PDF

Enhancing Catalytic Removal of Autoexhaust Soot Particles via the Modulation of Interfacial Oxygen Vacancies in Cu/CeO Catalysts.

Environ Sci Technol

January 2025

State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.

The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.

View Article and Find Full Text PDF

The objective of this study was to investigate the effect of dynamic pulsation settings that increased the open phase and reduced the closed phase of pulsation during the peak milk flow period together with increasing the milk flow rate switch-point for cluster detachment on milking duration and teat condition after milking. The present study filled current gaps in knowledge by informing on the effects of both milk flow rate switch-points and dynamic pulsation together in one experiment, while presenting data on milking performance, strip milk, teat condition and vacuum levels in the cluster during milking. To this end, 4 treatments consisting of different milk flow rate switch-points and pulsator settings combinations were deployed across 4 groups of 24 cows for 8 weeks.

View Article and Find Full Text PDF

The potential health hazards of micro/nanoplastics in food have become a significant concern. This study developed a Polydopamine-modified sodium alginate hydrogel (PMSAH) for removing microplastics in daily drinking water. The hydrogel's performance, characteristics, and kinetics for microplastic removal were systematically evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!