Ferns, the second largest group of vascular plants, originated ~400 million years ago (Mya). They became dominant in the ancient Earth landscape before the angiosperms and are still important in current ecosystems. Many ferns have exceptionally high chromosome numbers, possibly resulting from whole-genome duplications (WGDs). However, WGDs have not been investigated molecularly across fern diversity. Here we detected and dated fern WGDs using a phylogenomic approach and by calculating synonymous substitution rates (Ks). We also investigated a possible correlation between proposed WGDs and shifts in species diversification rates. We identified 19 WGDs: three ancient events along the fern phylogenetic backbone that are shared by 66%-97% of extant ferns, with additional lineage-specific WGDs for eight orders, providing strong evidence for recurring genome duplications across fern evolutionary history. We also observed similar Ks peak values for more than half of these WGDs, with multiple WGDs occurring close to the Cretaceous (~145-66 Mya). Despite the repeated WGD events, the biodiversity of ferns declined during the Cretaceous, implying that other factors probably contributed to the floristic turnover from ferns to angiosperms. This study provides molecular evidence for recurring WGDs in ferns and offers important clues to the genomic evolutionary history of ferns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jipb.12877 | DOI Listing |
Int J Biol Macromol
December 2024
Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China. Electronic address:
The UGT72 gene family encodes proteins that glycosylate phenylpropanoids, and thus contribute to the synthesis of various phenolic substances. However, their functional role and evolutionary history in Pyrus spp. remains poorly understood.
View Article and Find Full Text PDFGenomics
January 2025
Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Medical Botanical Garden, China Pharmaceutical University, Nanjing 211198, China. Electronic address:
Plant Physiol Biochem
January 2025
Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil. Electronic address:
Int J Mol Sci
October 2024
College of Horticulture, Northwest A&F University, Yangling 712100, China.
The AP2/ERF family constitutes one of the largest groups of transcription factors in the Solanaceae. AP2/ERF contributes to various plant biological processes, including growth, development, and responses to various stresses. The origins and functional diversification of AP2/ERF within the Solanaceae family remain poorly understood, primarily because of the complex interactions between whole-genome duplications (WGDs) and tandem duplications.
View Article and Find Full Text PDFNew Phytol
December 2024
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
While flowering plants have diversified in virtually every terrestrial clime, climate constrains the distribution of individual lineages. Overcoming climatic constraints may be associated with diverse evolutionary phenomena including whole genome duplication (WGD), gene-tree conflict, and life-history changes. Climatic shifts may also have facilitated increases in flowering plant diversification rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!