Insight into the Structure of the "Unstructured" Tau Protein.

Structure

University of Victoria-Genome British Columbia Proteomics Centre, 3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, BC V8Z7X8, Canada; Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada; Department of Biochemistry and Microbiology, University of Victoria, Petch Building, Room 270d, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada. Electronic address:

Published: November 2019

Combining structural proteomics experimental data with computational methods is a powerful tool for protein structure prediction. Here, we apply a recently developed approach for de novo protein structure determination based on the incorporation of short-distance crosslinking data as constraints in discrete molecular dynamics simulations (CL-DMD), for the determination of the conformational ensemble of tau protein in solution. The predicted structures were in agreement with surface modification and long-distance crosslinking data. Tau in solution was found as an ensemble of rather compact globular conformations with distinct topology, inter-residue contacts, and a number of transient secondary-structure elements. Regions important for pathological aggregation consistently were found to contain β strands. The determined structures are compatible with the tau protein in solution being a molten globule at near-ground state with persistent residual structural features which we were able to capture by CL-DMD. The predicted structure may facilitate an understanding of the misfolding and oligomerization pathways of the tau protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2019.09.003DOI Listing

Publication Analysis

Top Keywords

tau protein
16
protein structure
8
crosslinking data
8
protein solution
8
protein
6
tau
5
insight structure
4
structure "unstructured"
4
"unstructured" tau
4
protein combining
4

Similar Publications

Introduction: Using an Asian cohort with high prevalence of concomitant cerebrovascular disease (CeVD), we evaluated the performance of a plasma immunoassay for tau phosphorylated at threonine 217 (p-tau217) in detecting amyloid beta positivity (Aβ+) on positron emission tomography and cognitive decline, based on a three-range reference, which stratified patients into low-, intermediate-, and high-risk groups for Aβ+.

Methods: Brain amyloid status (Aβ- [n = 142] vs Aβ+ [n = 73]) on amyloid PET scans was assessed along with the plasma ALZpath p-tau217 assay to derive three-range reference points for PET Aβ+ based on 90% sensitivity (lower threshold) and 90% specificity (upper threshold).

Results: Plasma p-tau217 (area under the curve [AUC] = 0.

View Article and Find Full Text PDF

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Upregulated astrocyte HDAC7 induces Alzheimer-like tau pathologies via deacetylating transcription factor-EB and inhibiting lysosome biogenesis.

Mol Neurodegener

January 2025

College of Life Sciences and Oceanography, Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518060, Guangdong, China.

Background: Astrocytes, the most abundant glial cell type in the brain, will convert into the reactive state in response to proteotoxic stress such as tau accumulation, a characteristic feature of Alzheimer's disease (AD) and other tauopathies. The formation of reactive astrocytes is partially attributed to the disruption of autophagy lysosomal signaling, and inhibiting of some histone deacetylases (HDACs) has been demonstrated to reduce the molecular and functional characteristics of reactive astrocytes. However, the precise role of autophagy lysosomal signaling in astrocytes that regulates tau pathology remains unclear.

View Article and Find Full Text PDF

Genome-wide association study unravels mechanisms of brain glymphatic activity.

Nat Commun

January 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.

Brain glymphatic activity, as indicated by diffusion-tensor imaging analysis along the perivascular space (ALPS) index, is involved in developmental neuropsychiatric and neurodegenerative diseases, but its genetic architecture is poorly understood. Here, we identified 17 unique genome-wide significant loci and 161 candidate genes linked to the ALPS-indexes in a discovery sample of 31,021 individuals from the UK Biobank. Seven loci were replicated in two independent datasets.

View Article and Find Full Text PDF

Objective: Accumulation of hydrophobic bile acids is linked with cancer development. However, derivatives of deoxycholic acid (DCA) and lithocholic acid (LCA) produced via bacterial metabolism may mitigate the proinflammatory and cytotoxic effects of hydrophobic bile acids. The impact of diet on secondary bile acid (BA) derivative production has not been determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!