In this paper, we evaluate the PPARα signaling network in rats, examining transcriptional responses in primary hepatocytes exposed to a PPARα specific ligand, GW7647. These transcriptomic studies were complemented with ChIP-seq studies of PPARα binding and transcription binding motif identification for PPARα responsive genes. We also conducted a limited study of GW7647 dosing the in intact rat to examine differences in transcriptional responses for primary hepatocytes in vitro and in the intact liver. The rat network has a much larger number of down-regulated genes and pathways than we had found in the human and the PPARα binding motifs in rat differed for upregulated and down regulated genes. Based on these results and comparison with our previous work with the human PPARα signaling network, we identified qualitative differences in the transcriptional networks controlled by PPARα activation in the two species that provide an explanation of the interspecies differences in the responses of humans and rodents to GW7647 and likely to other PPARα agonists. These studies also allow some observations on the manner in which in vitro, fit-for-purpose assays in human hepatocytes could form the basis for risk assessment without recourse to in-life studies in rodents or other test species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2019.02.017DOI Listing

Publication Analysis

Top Keywords

pparα signaling
12
pparα
9
qualitative differences
8
risk assessment
8
signaling network
8
transcriptional responses
8
responses primary
8
primary hepatocytes
8
pparα binding
8
differences transcriptional
8

Similar Publications

MicroRNA-21 (miR-21) is one of the most frequently upregulated miRNAs in liver diseases such as nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). However, mechanistic pathways that connect NAFLD and HCC remain elusive. We developed a doxycycline (Dox)-inducible transgenic zebrafish model (LmiR21) which exhibited an upregulation of miR-21 in the liver, which in turn induced the full spectrum of NAFLD, including steatosis, inflammation, fibrosis, and HCC, in the LmiR21 fish.

View Article and Find Full Text PDF
Article Synopsis
  • The pparab subtype in zebrafish is strongly expressed in high oxidative tissues and its deficiency reduces fatty acid β-oxidation in both liver and muscle, similar to the role of PPARα in mammals.
  • Knockout of pparab leads to increased glucose utilization and inhibited amino acid breakdown, showcasing a metabolic shift in energy sources.
  • This research offers new insights into PPARα's regulatory role in nutrient metabolism and establishes zebrafish as a valuable model for studying metabolic processes comparably to mammals.
View Article and Find Full Text PDF

Medaka (Oryzias latipes) is a teleost fish with an XX/XY sex determination system, similar to that of mammals. However, under high temperature conditions, XX medaka is masculinised by elevation of cortisol, the major teleost glucocorticoid. In this study, to identify novel factors in the gonads acting downstream from cortisol during sexual differentiation, we performed RNA sequencing (RNA-seq) analysis using the gonadal regions of larvae reared at normal temperature with and without cortisol, and at high temperature.

View Article and Find Full Text PDF

Background: Many molecules and signaling pathways involved in neural development play a role in neurodegenerative diseases and brain tumor progression. Peroxisome proliferator-activated receptor (PPAR) proteins regulate the differentiation of tissues and the progression of many diseases. However, the role of these proteins in neural development is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!