Are biomechanical stability deficits during unplanned single-leg landings related to specific markers of cognitive function?

J Sci Med Sport

Division of Preventive and Sports Medicine, Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt, Germany.

Published: January 2020

Objectives: Cognitive skills such as working memory or inhibitory control are suggested to have an impact on injury risk during time-constrained athletic movements. Thus, the aim of this study was to gain further insights into the cognitive processes associated with biomechanical stability in unplanned jump-landings.

Design: Cross-sectional.

Methods: Twenty male participants (27±4years) performed 70 counter-movement jumps with single-leg landings on a pressure plate. Equally balanced and in randomized order, these were to be performed either planned (landing leg indicated before take-off) or unplanned (visual cue during flight). Biomechanical stability was estimated from vertical peak ground reaction force (pGRF), time to stabilization (TTS), center of pressure path length (COP), and the number of standing errors (ground touch with free leg). In addition, decision-making was assessed as the amount of landing errors (wrong/both feet) in the unplanned condition. Cognitiive function was measured using computerized as well as pen-and-paper-testing.

Results: Unplanned landings produced higher COP values (p<0.001, d=1.1) and more standing errors (p<0.001, d=0.9) than the pre-planned condition. Decreased postural stability (COP) was related to lower inhibitory control (p=0.036, r=0.48). There was a correlation between the increase in standing errors and better cognitive flexibility/working memory (p=0.037, r=-0.48) and short-term memory (p=0.028, r=0.50). The opposite was found for the unplanned landing errors: poor decision-making was associated with deficits in cognitive flexibility/working memory (p=0.022, r=0.54) and short-term memory (p=0.019, r=-0.55).

Conclusions: Cognitive function may be an important, but under-researched moderator of unplanned jump-landing safety. Further research should elucidate the development of training methods aiming to improve movement-related decision-making and landing stability under time constraints.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsams.2019.09.003DOI Listing

Publication Analysis

Top Keywords

biomechanical stability
12
single-leg landings
8
unplanned
5
stability deficits
4
deficits unplanned
4
unplanned single-leg
4
landings specific
4
specific markers
4
markers cognitive
4
cognitive function?
4

Similar Publications

The deltoid ligament (medial collateral ligament) and the syndesmosis (a composite ligamentous structure at the distal tibiofibular junction) are critical for maintaining ankle stability. In cases of high-energy ankle fractures, these structures are often injured simultaneously, leading to instability and potential long-term complications such as post-traumatic arthritis. This review aims to explore advancements in minimally invasive techniques for the treatment of combined deltoid ligament and syndesmosis injuries, with a focus on optimizing surgical outcomes and reducing patient morbidity.

View Article and Find Full Text PDF

Objective: Surgical treatments for degenerative lumbar spinal disorders involve decompression of neural structures and arthrodesis to address pain from unstable intervertebral segments. Lumbar instrumented facet fusion (IFF), a less invasive technique, has shown positive short-term outcomes, but reports on its long-term outcomes are scarce. This study aims to report its long-term biomechanical stability and clinical outcomes.

View Article and Find Full Text PDF

Acute effects of voluntary breathing patterns on postural control during walking.

Hum Mov Sci

January 2025

Sports Physical Therapy Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Greece. Electronic address:

Introduction: Breathing and postural control is reported to be both neuromuscularly and mechanically interdependent. To date, the effects of voluntary abdominal and thoracic breathing (VAB and VTB) on the EMG activity of muscles involved in both respiratory and postural functions, as well as gait biomechanics related to these breathing patterns, have not been investigated in young, healthy adults. The aim of the study was to evaluate the EMG responses of neck and trunk muscles, as well as the kinematic, stability, and kinetic parameters of gait induced by VAB and VTB compared to involuntary breathing (INB).

View Article and Find Full Text PDF

Background: Falls on stairs are a major cause of severe injuries among older adults, with stair descent posing significantly greater risks than ascent. Variations in stair descent phenotypes may reflect differences in physical function and biomechanical stability, and their identification may prevent falls.

Aims: This study aims to classify stair descent phenotypes in older adults and investigate the biomechanical and physical functional differences between these phenotypes using hierarchical cluster analysis.

View Article and Find Full Text PDF

Objective: This study investigated upper limb kinematics and muscle co-activation in wheelchair tennis players during the forehand stroke. By analyzing linear and angular kinematic variables alongside muscle co-activation patterns, the study aimed to provide insights into the biomechanical mechanisms supporting forehand stroke performance.

Method: Fifteen professional male wheelchair tennis players (height: 163.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!